Metamath Proof Explorer


Theorem cosneghalfpi

Description: The cosine of -u _pi / 2 is zero. (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Assertion cosneghalfpi
|- ( cos ` -u ( _pi / 2 ) ) = 0

Proof

Step Hyp Ref Expression
1 halfpire
 |-  ( _pi / 2 ) e. RR
2 1 recni
 |-  ( _pi / 2 ) e. CC
3 cosneg
 |-  ( ( _pi / 2 ) e. CC -> ( cos ` -u ( _pi / 2 ) ) = ( cos ` ( _pi / 2 ) ) )
4 2 3 ax-mp
 |-  ( cos ` -u ( _pi / 2 ) ) = ( cos ` ( _pi / 2 ) )
5 coshalfpi
 |-  ( cos ` ( _pi / 2 ) ) = 0
6 4 5 eqtri
 |-  ( cos ` -u ( _pi / 2 ) ) = 0