Step |
Hyp |
Ref |
Expression |
1 |
|
2cn |
|- 2 e. CC |
2 |
|
picn |
|- _pi e. CC |
3 |
1 2
|
mulcli |
|- ( 2 x. _pi ) e. CC |
4 |
3
|
mulm1i |
|- ( -u 1 x. ( 2 x. _pi ) ) = -u ( 2 x. _pi ) |
5 |
4
|
oveq2i |
|- ( _pi + ( -u 1 x. ( 2 x. _pi ) ) ) = ( _pi + -u ( 2 x. _pi ) ) |
6 |
2 3
|
negsubi |
|- ( _pi + -u ( 2 x. _pi ) ) = ( _pi - ( 2 x. _pi ) ) |
7 |
|
sub2times |
|- ( _pi e. CC -> ( _pi - ( 2 x. _pi ) ) = -u _pi ) |
8 |
2 7
|
ax-mp |
|- ( _pi - ( 2 x. _pi ) ) = -u _pi |
9 |
5 6 8
|
3eqtrri |
|- -u _pi = ( _pi + ( -u 1 x. ( 2 x. _pi ) ) ) |
10 |
9
|
fveq2i |
|- ( cos ` -u _pi ) = ( cos ` ( _pi + ( -u 1 x. ( 2 x. _pi ) ) ) ) |
11 |
|
neg1z |
|- -u 1 e. ZZ |
12 |
|
cosper |
|- ( ( _pi e. CC /\ -u 1 e. ZZ ) -> ( cos ` ( _pi + ( -u 1 x. ( 2 x. _pi ) ) ) ) = ( cos ` _pi ) ) |
13 |
2 11 12
|
mp2an |
|- ( cos ` ( _pi + ( -u 1 x. ( 2 x. _pi ) ) ) ) = ( cos ` _pi ) |
14 |
|
cospi |
|- ( cos ` _pi ) = -u 1 |
15 |
10 13 14
|
3eqtri |
|- ( cos ` -u _pi ) = -u 1 |