| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpll |  |-  ( ( ( A e. ( 0 [,] _pi ) /\ B e. ( 0 [,] _pi ) ) /\ A < B ) -> A e. ( 0 [,] _pi ) ) | 
						
							| 2 |  | simplr |  |-  ( ( ( A e. ( 0 [,] _pi ) /\ B e. ( 0 [,] _pi ) ) /\ A < B ) -> B e. ( 0 [,] _pi ) ) | 
						
							| 3 |  | simpr |  |-  ( ( ( A e. ( 0 [,] _pi ) /\ B e. ( 0 [,] _pi ) ) /\ A < B ) -> A < B ) | 
						
							| 4 | 1 2 3 | cosordlem |  |-  ( ( ( A e. ( 0 [,] _pi ) /\ B e. ( 0 [,] _pi ) ) /\ A < B ) -> ( cos ` B ) < ( cos ` A ) ) | 
						
							| 5 | 4 | ex |  |-  ( ( A e. ( 0 [,] _pi ) /\ B e. ( 0 [,] _pi ) ) -> ( A < B -> ( cos ` B ) < ( cos ` A ) ) ) | 
						
							| 6 |  | fveq2 |  |-  ( A = B -> ( cos ` A ) = ( cos ` B ) ) | 
						
							| 7 | 6 | eqcomd |  |-  ( A = B -> ( cos ` B ) = ( cos ` A ) ) | 
						
							| 8 | 7 | a1i |  |-  ( ( A e. ( 0 [,] _pi ) /\ B e. ( 0 [,] _pi ) ) -> ( A = B -> ( cos ` B ) = ( cos ` A ) ) ) | 
						
							| 9 |  | simplr |  |-  ( ( ( A e. ( 0 [,] _pi ) /\ B e. ( 0 [,] _pi ) ) /\ B < A ) -> B e. ( 0 [,] _pi ) ) | 
						
							| 10 |  | simpll |  |-  ( ( ( A e. ( 0 [,] _pi ) /\ B e. ( 0 [,] _pi ) ) /\ B < A ) -> A e. ( 0 [,] _pi ) ) | 
						
							| 11 |  | simpr |  |-  ( ( ( A e. ( 0 [,] _pi ) /\ B e. ( 0 [,] _pi ) ) /\ B < A ) -> B < A ) | 
						
							| 12 | 9 10 11 | cosordlem |  |-  ( ( ( A e. ( 0 [,] _pi ) /\ B e. ( 0 [,] _pi ) ) /\ B < A ) -> ( cos ` A ) < ( cos ` B ) ) | 
						
							| 13 | 12 | ex |  |-  ( ( A e. ( 0 [,] _pi ) /\ B e. ( 0 [,] _pi ) ) -> ( B < A -> ( cos ` A ) < ( cos ` B ) ) ) | 
						
							| 14 | 8 13 | orim12d |  |-  ( ( A e. ( 0 [,] _pi ) /\ B e. ( 0 [,] _pi ) ) -> ( ( A = B \/ B < A ) -> ( ( cos ` B ) = ( cos ` A ) \/ ( cos ` A ) < ( cos ` B ) ) ) ) | 
						
							| 15 | 14 | con3d |  |-  ( ( A e. ( 0 [,] _pi ) /\ B e. ( 0 [,] _pi ) ) -> ( -. ( ( cos ` B ) = ( cos ` A ) \/ ( cos ` A ) < ( cos ` B ) ) -> -. ( A = B \/ B < A ) ) ) | 
						
							| 16 |  | 0re |  |-  0 e. RR | 
						
							| 17 |  | pire |  |-  _pi e. RR | 
						
							| 18 | 16 17 | elicc2i |  |-  ( A e. ( 0 [,] _pi ) <-> ( A e. RR /\ 0 <_ A /\ A <_ _pi ) ) | 
						
							| 19 | 18 | simp1bi |  |-  ( A e. ( 0 [,] _pi ) -> A e. RR ) | 
						
							| 20 | 16 17 | elicc2i |  |-  ( B e. ( 0 [,] _pi ) <-> ( B e. RR /\ 0 <_ B /\ B <_ _pi ) ) | 
						
							| 21 | 20 | simp1bi |  |-  ( B e. ( 0 [,] _pi ) -> B e. RR ) | 
						
							| 22 |  | recoscl |  |-  ( B e. RR -> ( cos ` B ) e. RR ) | 
						
							| 23 |  | recoscl |  |-  ( A e. RR -> ( cos ` A ) e. RR ) | 
						
							| 24 |  | axlttri |  |-  ( ( ( cos ` B ) e. RR /\ ( cos ` A ) e. RR ) -> ( ( cos ` B ) < ( cos ` A ) <-> -. ( ( cos ` B ) = ( cos ` A ) \/ ( cos ` A ) < ( cos ` B ) ) ) ) | 
						
							| 25 | 22 23 24 | syl2anr |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( cos ` B ) < ( cos ` A ) <-> -. ( ( cos ` B ) = ( cos ` A ) \/ ( cos ` A ) < ( cos ` B ) ) ) ) | 
						
							| 26 | 19 21 25 | syl2an |  |-  ( ( A e. ( 0 [,] _pi ) /\ B e. ( 0 [,] _pi ) ) -> ( ( cos ` B ) < ( cos ` A ) <-> -. ( ( cos ` B ) = ( cos ` A ) \/ ( cos ` A ) < ( cos ` B ) ) ) ) | 
						
							| 27 |  | axlttri |  |-  ( ( A e. RR /\ B e. RR ) -> ( A < B <-> -. ( A = B \/ B < A ) ) ) | 
						
							| 28 | 19 21 27 | syl2an |  |-  ( ( A e. ( 0 [,] _pi ) /\ B e. ( 0 [,] _pi ) ) -> ( A < B <-> -. ( A = B \/ B < A ) ) ) | 
						
							| 29 | 15 26 28 | 3imtr4d |  |-  ( ( A e. ( 0 [,] _pi ) /\ B e. ( 0 [,] _pi ) ) -> ( ( cos ` B ) < ( cos ` A ) -> A < B ) ) | 
						
							| 30 | 5 29 | impbid |  |-  ( ( A e. ( 0 [,] _pi ) /\ B e. ( 0 [,] _pi ) ) -> ( A < B <-> ( cos ` B ) < ( cos ` A ) ) ) |