| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cosord.1 |  |-  ( ph -> A e. ( 0 [,] _pi ) ) | 
						
							| 2 |  | cosord.2 |  |-  ( ph -> B e. ( 0 [,] _pi ) ) | 
						
							| 3 |  | cosord.3 |  |-  ( ph -> A < B ) | 
						
							| 4 |  | 0re |  |-  0 e. RR | 
						
							| 5 |  | pire |  |-  _pi e. RR | 
						
							| 6 | 4 5 | elicc2i |  |-  ( B e. ( 0 [,] _pi ) <-> ( B e. RR /\ 0 <_ B /\ B <_ _pi ) ) | 
						
							| 7 | 2 6 | sylib |  |-  ( ph -> ( B e. RR /\ 0 <_ B /\ B <_ _pi ) ) | 
						
							| 8 | 7 | simp1d |  |-  ( ph -> B e. RR ) | 
						
							| 9 | 8 | recnd |  |-  ( ph -> B e. CC ) | 
						
							| 10 | 4 5 | elicc2i |  |-  ( A e. ( 0 [,] _pi ) <-> ( A e. RR /\ 0 <_ A /\ A <_ _pi ) ) | 
						
							| 11 | 1 10 | sylib |  |-  ( ph -> ( A e. RR /\ 0 <_ A /\ A <_ _pi ) ) | 
						
							| 12 | 11 | simp1d |  |-  ( ph -> A e. RR ) | 
						
							| 13 | 12 | recnd |  |-  ( ph -> A e. CC ) | 
						
							| 14 |  | subcos |  |-  ( ( B e. CC /\ A e. CC ) -> ( ( cos ` A ) - ( cos ` B ) ) = ( 2 x. ( ( sin ` ( ( B + A ) / 2 ) ) x. ( sin ` ( ( B - A ) / 2 ) ) ) ) ) | 
						
							| 15 | 9 13 14 | syl2anc |  |-  ( ph -> ( ( cos ` A ) - ( cos ` B ) ) = ( 2 x. ( ( sin ` ( ( B + A ) / 2 ) ) x. ( sin ` ( ( B - A ) / 2 ) ) ) ) ) | 
						
							| 16 |  | 2rp |  |-  2 e. RR+ | 
						
							| 17 | 8 12 | readdcld |  |-  ( ph -> ( B + A ) e. RR ) | 
						
							| 18 | 17 | rehalfcld |  |-  ( ph -> ( ( B + A ) / 2 ) e. RR ) | 
						
							| 19 | 18 | resincld |  |-  ( ph -> ( sin ` ( ( B + A ) / 2 ) ) e. RR ) | 
						
							| 20 | 4 | a1i |  |-  ( ph -> 0 e. RR ) | 
						
							| 21 | 11 | simp2d |  |-  ( ph -> 0 <_ A ) | 
						
							| 22 | 20 12 8 21 3 | lelttrd |  |-  ( ph -> 0 < B ) | 
						
							| 23 | 8 12 22 21 | addgtge0d |  |-  ( ph -> 0 < ( B + A ) ) | 
						
							| 24 |  | 2re |  |-  2 e. RR | 
						
							| 25 |  | 2pos |  |-  0 < 2 | 
						
							| 26 |  | divgt0 |  |-  ( ( ( ( B + A ) e. RR /\ 0 < ( B + A ) ) /\ ( 2 e. RR /\ 0 < 2 ) ) -> 0 < ( ( B + A ) / 2 ) ) | 
						
							| 27 | 24 25 26 | mpanr12 |  |-  ( ( ( B + A ) e. RR /\ 0 < ( B + A ) ) -> 0 < ( ( B + A ) / 2 ) ) | 
						
							| 28 | 17 23 27 | syl2anc |  |-  ( ph -> 0 < ( ( B + A ) / 2 ) ) | 
						
							| 29 | 5 | a1i |  |-  ( ph -> _pi e. RR ) | 
						
							| 30 | 12 8 8 3 | ltadd2dd |  |-  ( ph -> ( B + A ) < ( B + B ) ) | 
						
							| 31 | 9 | 2timesd |  |-  ( ph -> ( 2 x. B ) = ( B + B ) ) | 
						
							| 32 | 30 31 | breqtrrd |  |-  ( ph -> ( B + A ) < ( 2 x. B ) ) | 
						
							| 33 | 24 | a1i |  |-  ( ph -> 2 e. RR ) | 
						
							| 34 | 25 | a1i |  |-  ( ph -> 0 < 2 ) | 
						
							| 35 |  | ltdivmul |  |-  ( ( ( B + A ) e. RR /\ B e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( ( B + A ) / 2 ) < B <-> ( B + A ) < ( 2 x. B ) ) ) | 
						
							| 36 | 17 8 33 34 35 | syl112anc |  |-  ( ph -> ( ( ( B + A ) / 2 ) < B <-> ( B + A ) < ( 2 x. B ) ) ) | 
						
							| 37 | 32 36 | mpbird |  |-  ( ph -> ( ( B + A ) / 2 ) < B ) | 
						
							| 38 | 7 | simp3d |  |-  ( ph -> B <_ _pi ) | 
						
							| 39 | 18 8 29 37 38 | ltletrd |  |-  ( ph -> ( ( B + A ) / 2 ) < _pi ) | 
						
							| 40 |  | 0xr |  |-  0 e. RR* | 
						
							| 41 | 5 | rexri |  |-  _pi e. RR* | 
						
							| 42 |  | elioo2 |  |-  ( ( 0 e. RR* /\ _pi e. RR* ) -> ( ( ( B + A ) / 2 ) e. ( 0 (,) _pi ) <-> ( ( ( B + A ) / 2 ) e. RR /\ 0 < ( ( B + A ) / 2 ) /\ ( ( B + A ) / 2 ) < _pi ) ) ) | 
						
							| 43 | 40 41 42 | mp2an |  |-  ( ( ( B + A ) / 2 ) e. ( 0 (,) _pi ) <-> ( ( ( B + A ) / 2 ) e. RR /\ 0 < ( ( B + A ) / 2 ) /\ ( ( B + A ) / 2 ) < _pi ) ) | 
						
							| 44 | 18 28 39 43 | syl3anbrc |  |-  ( ph -> ( ( B + A ) / 2 ) e. ( 0 (,) _pi ) ) | 
						
							| 45 |  | sinq12gt0 |  |-  ( ( ( B + A ) / 2 ) e. ( 0 (,) _pi ) -> 0 < ( sin ` ( ( B + A ) / 2 ) ) ) | 
						
							| 46 | 44 45 | syl |  |-  ( ph -> 0 < ( sin ` ( ( B + A ) / 2 ) ) ) | 
						
							| 47 | 19 46 | elrpd |  |-  ( ph -> ( sin ` ( ( B + A ) / 2 ) ) e. RR+ ) | 
						
							| 48 | 8 12 | resubcld |  |-  ( ph -> ( B - A ) e. RR ) | 
						
							| 49 | 48 | rehalfcld |  |-  ( ph -> ( ( B - A ) / 2 ) e. RR ) | 
						
							| 50 | 49 | resincld |  |-  ( ph -> ( sin ` ( ( B - A ) / 2 ) ) e. RR ) | 
						
							| 51 | 12 8 | posdifd |  |-  ( ph -> ( A < B <-> 0 < ( B - A ) ) ) | 
						
							| 52 | 3 51 | mpbid |  |-  ( ph -> 0 < ( B - A ) ) | 
						
							| 53 |  | divgt0 |  |-  ( ( ( ( B - A ) e. RR /\ 0 < ( B - A ) ) /\ ( 2 e. RR /\ 0 < 2 ) ) -> 0 < ( ( B - A ) / 2 ) ) | 
						
							| 54 | 24 25 53 | mpanr12 |  |-  ( ( ( B - A ) e. RR /\ 0 < ( B - A ) ) -> 0 < ( ( B - A ) / 2 ) ) | 
						
							| 55 | 48 52 54 | syl2anc |  |-  ( ph -> 0 < ( ( B - A ) / 2 ) ) | 
						
							| 56 |  | rehalfcl |  |-  ( _pi e. RR -> ( _pi / 2 ) e. RR ) | 
						
							| 57 | 5 56 | mp1i |  |-  ( ph -> ( _pi / 2 ) e. RR ) | 
						
							| 58 | 8 12 | subge02d |  |-  ( ph -> ( 0 <_ A <-> ( B - A ) <_ B ) ) | 
						
							| 59 | 21 58 | mpbid |  |-  ( ph -> ( B - A ) <_ B ) | 
						
							| 60 | 48 8 29 59 38 | letrd |  |-  ( ph -> ( B - A ) <_ _pi ) | 
						
							| 61 |  | lediv1 |  |-  ( ( ( B - A ) e. RR /\ _pi e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( B - A ) <_ _pi <-> ( ( B - A ) / 2 ) <_ ( _pi / 2 ) ) ) | 
						
							| 62 | 48 29 33 34 61 | syl112anc |  |-  ( ph -> ( ( B - A ) <_ _pi <-> ( ( B - A ) / 2 ) <_ ( _pi / 2 ) ) ) | 
						
							| 63 | 60 62 | mpbid |  |-  ( ph -> ( ( B - A ) / 2 ) <_ ( _pi / 2 ) ) | 
						
							| 64 |  | pirp |  |-  _pi e. RR+ | 
						
							| 65 |  | rphalflt |  |-  ( _pi e. RR+ -> ( _pi / 2 ) < _pi ) | 
						
							| 66 | 64 65 | mp1i |  |-  ( ph -> ( _pi / 2 ) < _pi ) | 
						
							| 67 | 49 57 29 63 66 | lelttrd |  |-  ( ph -> ( ( B - A ) / 2 ) < _pi ) | 
						
							| 68 |  | elioo2 |  |-  ( ( 0 e. RR* /\ _pi e. RR* ) -> ( ( ( B - A ) / 2 ) e. ( 0 (,) _pi ) <-> ( ( ( B - A ) / 2 ) e. RR /\ 0 < ( ( B - A ) / 2 ) /\ ( ( B - A ) / 2 ) < _pi ) ) ) | 
						
							| 69 | 40 41 68 | mp2an |  |-  ( ( ( B - A ) / 2 ) e. ( 0 (,) _pi ) <-> ( ( ( B - A ) / 2 ) e. RR /\ 0 < ( ( B - A ) / 2 ) /\ ( ( B - A ) / 2 ) < _pi ) ) | 
						
							| 70 | 49 55 67 69 | syl3anbrc |  |-  ( ph -> ( ( B - A ) / 2 ) e. ( 0 (,) _pi ) ) | 
						
							| 71 |  | sinq12gt0 |  |-  ( ( ( B - A ) / 2 ) e. ( 0 (,) _pi ) -> 0 < ( sin ` ( ( B - A ) / 2 ) ) ) | 
						
							| 72 | 70 71 | syl |  |-  ( ph -> 0 < ( sin ` ( ( B - A ) / 2 ) ) ) | 
						
							| 73 | 50 72 | elrpd |  |-  ( ph -> ( sin ` ( ( B - A ) / 2 ) ) e. RR+ ) | 
						
							| 74 | 47 73 | rpmulcld |  |-  ( ph -> ( ( sin ` ( ( B + A ) / 2 ) ) x. ( sin ` ( ( B - A ) / 2 ) ) ) e. RR+ ) | 
						
							| 75 |  | rpmulcl |  |-  ( ( 2 e. RR+ /\ ( ( sin ` ( ( B + A ) / 2 ) ) x. ( sin ` ( ( B - A ) / 2 ) ) ) e. RR+ ) -> ( 2 x. ( ( sin ` ( ( B + A ) / 2 ) ) x. ( sin ` ( ( B - A ) / 2 ) ) ) ) e. RR+ ) | 
						
							| 76 | 16 74 75 | sylancr |  |-  ( ph -> ( 2 x. ( ( sin ` ( ( B + A ) / 2 ) ) x. ( sin ` ( ( B - A ) / 2 ) ) ) ) e. RR+ ) | 
						
							| 77 | 15 76 | eqeltrd |  |-  ( ph -> ( ( cos ` A ) - ( cos ` B ) ) e. RR+ ) | 
						
							| 78 | 8 | recoscld |  |-  ( ph -> ( cos ` B ) e. RR ) | 
						
							| 79 | 12 | recoscld |  |-  ( ph -> ( cos ` A ) e. RR ) | 
						
							| 80 |  | difrp |  |-  ( ( ( cos ` B ) e. RR /\ ( cos ` A ) e. RR ) -> ( ( cos ` B ) < ( cos ` A ) <-> ( ( cos ` A ) - ( cos ` B ) ) e. RR+ ) ) | 
						
							| 81 | 78 79 80 | syl2anc |  |-  ( ph -> ( ( cos ` B ) < ( cos ` A ) <-> ( ( cos ` A ) - ( cos ` B ) ) e. RR+ ) ) | 
						
							| 82 | 77 81 | mpbird |  |-  ( ph -> ( cos ` B ) < ( cos ` A ) ) |