| Step | Hyp | Ref | Expression | 
						
							| 1 |  | halfpire |  |-  ( _pi / 2 ) e. RR | 
						
							| 2 |  | neghalfpire |  |-  -u ( _pi / 2 ) e. RR | 
						
							| 3 | 2 1 | elicc2i |  |-  ( A e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) <-> ( A e. RR /\ -u ( _pi / 2 ) <_ A /\ A <_ ( _pi / 2 ) ) ) | 
						
							| 4 | 3 | simp1bi |  |-  ( A e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> A e. RR ) | 
						
							| 5 |  | resubcl |  |-  ( ( ( _pi / 2 ) e. RR /\ A e. RR ) -> ( ( _pi / 2 ) - A ) e. RR ) | 
						
							| 6 | 1 4 5 | sylancr |  |-  ( A e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> ( ( _pi / 2 ) - A ) e. RR ) | 
						
							| 7 | 3 | simp3bi |  |-  ( A e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> A <_ ( _pi / 2 ) ) | 
						
							| 8 |  | subge0 |  |-  ( ( ( _pi / 2 ) e. RR /\ A e. RR ) -> ( 0 <_ ( ( _pi / 2 ) - A ) <-> A <_ ( _pi / 2 ) ) ) | 
						
							| 9 | 1 4 8 | sylancr |  |-  ( A e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> ( 0 <_ ( ( _pi / 2 ) - A ) <-> A <_ ( _pi / 2 ) ) ) | 
						
							| 10 | 7 9 | mpbird |  |-  ( A e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> 0 <_ ( ( _pi / 2 ) - A ) ) | 
						
							| 11 |  | picn |  |-  _pi e. CC | 
						
							| 12 |  | halfcl |  |-  ( _pi e. CC -> ( _pi / 2 ) e. CC ) | 
						
							| 13 | 11 12 | ax-mp |  |-  ( _pi / 2 ) e. CC | 
						
							| 14 | 13 | negcli |  |-  -u ( _pi / 2 ) e. CC | 
						
							| 15 | 11 13 | negsubi |  |-  ( _pi + -u ( _pi / 2 ) ) = ( _pi - ( _pi / 2 ) ) | 
						
							| 16 |  | pidiv2halves |  |-  ( ( _pi / 2 ) + ( _pi / 2 ) ) = _pi | 
						
							| 17 | 11 13 13 16 | subaddrii |  |-  ( _pi - ( _pi / 2 ) ) = ( _pi / 2 ) | 
						
							| 18 | 15 17 | eqtri |  |-  ( _pi + -u ( _pi / 2 ) ) = ( _pi / 2 ) | 
						
							| 19 | 13 11 14 18 | subaddrii |  |-  ( ( _pi / 2 ) - _pi ) = -u ( _pi / 2 ) | 
						
							| 20 | 3 | simp2bi |  |-  ( A e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> -u ( _pi / 2 ) <_ A ) | 
						
							| 21 | 19 20 | eqbrtrid |  |-  ( A e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> ( ( _pi / 2 ) - _pi ) <_ A ) | 
						
							| 22 |  | pire |  |-  _pi e. RR | 
						
							| 23 |  | suble |  |-  ( ( ( _pi / 2 ) e. RR /\ A e. RR /\ _pi e. RR ) -> ( ( ( _pi / 2 ) - A ) <_ _pi <-> ( ( _pi / 2 ) - _pi ) <_ A ) ) | 
						
							| 24 | 1 22 23 | mp3an13 |  |-  ( A e. RR -> ( ( ( _pi / 2 ) - A ) <_ _pi <-> ( ( _pi / 2 ) - _pi ) <_ A ) ) | 
						
							| 25 | 4 24 | syl |  |-  ( A e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> ( ( ( _pi / 2 ) - A ) <_ _pi <-> ( ( _pi / 2 ) - _pi ) <_ A ) ) | 
						
							| 26 | 21 25 | mpbird |  |-  ( A e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> ( ( _pi / 2 ) - A ) <_ _pi ) | 
						
							| 27 |  | 0re |  |-  0 e. RR | 
						
							| 28 | 27 22 | elicc2i |  |-  ( ( ( _pi / 2 ) - A ) e. ( 0 [,] _pi ) <-> ( ( ( _pi / 2 ) - A ) e. RR /\ 0 <_ ( ( _pi / 2 ) - A ) /\ ( ( _pi / 2 ) - A ) <_ _pi ) ) | 
						
							| 29 | 6 10 26 28 | syl3anbrc |  |-  ( A e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> ( ( _pi / 2 ) - A ) e. ( 0 [,] _pi ) ) | 
						
							| 30 |  | sinq12ge0 |  |-  ( ( ( _pi / 2 ) - A ) e. ( 0 [,] _pi ) -> 0 <_ ( sin ` ( ( _pi / 2 ) - A ) ) ) | 
						
							| 31 | 29 30 | syl |  |-  ( A e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> 0 <_ ( sin ` ( ( _pi / 2 ) - A ) ) ) | 
						
							| 32 | 4 | recnd |  |-  ( A e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> A e. CC ) | 
						
							| 33 |  | sinhalfpim |  |-  ( A e. CC -> ( sin ` ( ( _pi / 2 ) - A ) ) = ( cos ` A ) ) | 
						
							| 34 | 32 33 | syl |  |-  ( A e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> ( sin ` ( ( _pi / 2 ) - A ) ) = ( cos ` A ) ) | 
						
							| 35 | 31 34 | breqtrd |  |-  ( A e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> 0 <_ ( cos ` A ) ) |