Step |
Hyp |
Ref |
Expression |
1 |
|
halfpire |
|- ( _pi / 2 ) e. RR |
2 |
|
neghalfpire |
|- -u ( _pi / 2 ) e. RR |
3 |
2 1
|
elicc2i |
|- ( A e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) <-> ( A e. RR /\ -u ( _pi / 2 ) <_ A /\ A <_ ( _pi / 2 ) ) ) |
4 |
3
|
simp1bi |
|- ( A e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> A e. RR ) |
5 |
|
resubcl |
|- ( ( ( _pi / 2 ) e. RR /\ A e. RR ) -> ( ( _pi / 2 ) - A ) e. RR ) |
6 |
1 4 5
|
sylancr |
|- ( A e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> ( ( _pi / 2 ) - A ) e. RR ) |
7 |
3
|
simp3bi |
|- ( A e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> A <_ ( _pi / 2 ) ) |
8 |
|
subge0 |
|- ( ( ( _pi / 2 ) e. RR /\ A e. RR ) -> ( 0 <_ ( ( _pi / 2 ) - A ) <-> A <_ ( _pi / 2 ) ) ) |
9 |
1 4 8
|
sylancr |
|- ( A e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> ( 0 <_ ( ( _pi / 2 ) - A ) <-> A <_ ( _pi / 2 ) ) ) |
10 |
7 9
|
mpbird |
|- ( A e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> 0 <_ ( ( _pi / 2 ) - A ) ) |
11 |
|
picn |
|- _pi e. CC |
12 |
|
halfcl |
|- ( _pi e. CC -> ( _pi / 2 ) e. CC ) |
13 |
11 12
|
ax-mp |
|- ( _pi / 2 ) e. CC |
14 |
13
|
negcli |
|- -u ( _pi / 2 ) e. CC |
15 |
11 13
|
negsubi |
|- ( _pi + -u ( _pi / 2 ) ) = ( _pi - ( _pi / 2 ) ) |
16 |
|
pidiv2halves |
|- ( ( _pi / 2 ) + ( _pi / 2 ) ) = _pi |
17 |
11 13 13 16
|
subaddrii |
|- ( _pi - ( _pi / 2 ) ) = ( _pi / 2 ) |
18 |
15 17
|
eqtri |
|- ( _pi + -u ( _pi / 2 ) ) = ( _pi / 2 ) |
19 |
13 11 14 18
|
subaddrii |
|- ( ( _pi / 2 ) - _pi ) = -u ( _pi / 2 ) |
20 |
3
|
simp2bi |
|- ( A e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> -u ( _pi / 2 ) <_ A ) |
21 |
19 20
|
eqbrtrid |
|- ( A e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> ( ( _pi / 2 ) - _pi ) <_ A ) |
22 |
|
pire |
|- _pi e. RR |
23 |
|
suble |
|- ( ( ( _pi / 2 ) e. RR /\ A e. RR /\ _pi e. RR ) -> ( ( ( _pi / 2 ) - A ) <_ _pi <-> ( ( _pi / 2 ) - _pi ) <_ A ) ) |
24 |
1 22 23
|
mp3an13 |
|- ( A e. RR -> ( ( ( _pi / 2 ) - A ) <_ _pi <-> ( ( _pi / 2 ) - _pi ) <_ A ) ) |
25 |
4 24
|
syl |
|- ( A e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> ( ( ( _pi / 2 ) - A ) <_ _pi <-> ( ( _pi / 2 ) - _pi ) <_ A ) ) |
26 |
21 25
|
mpbird |
|- ( A e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> ( ( _pi / 2 ) - A ) <_ _pi ) |
27 |
|
0re |
|- 0 e. RR |
28 |
27 22
|
elicc2i |
|- ( ( ( _pi / 2 ) - A ) e. ( 0 [,] _pi ) <-> ( ( ( _pi / 2 ) - A ) e. RR /\ 0 <_ ( ( _pi / 2 ) - A ) /\ ( ( _pi / 2 ) - A ) <_ _pi ) ) |
29 |
6 10 26 28
|
syl3anbrc |
|- ( A e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> ( ( _pi / 2 ) - A ) e. ( 0 [,] _pi ) ) |
30 |
|
sinq12ge0 |
|- ( ( ( _pi / 2 ) - A ) e. ( 0 [,] _pi ) -> 0 <_ ( sin ` ( ( _pi / 2 ) - A ) ) ) |
31 |
29 30
|
syl |
|- ( A e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> 0 <_ ( sin ` ( ( _pi / 2 ) - A ) ) ) |
32 |
4
|
recnd |
|- ( A e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> A e. CC ) |
33 |
|
sinhalfpim |
|- ( A e. CC -> ( sin ` ( ( _pi / 2 ) - A ) ) = ( cos ` A ) ) |
34 |
32 33
|
syl |
|- ( A e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> ( sin ` ( ( _pi / 2 ) - A ) ) = ( cos ` A ) ) |
35 |
31 34
|
breqtrd |
|- ( A e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> 0 <_ ( cos ` A ) ) |