| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pire |
|- _pi e. RR |
| 2 |
|
2re |
|- 2 e. RR |
| 3 |
2 1
|
remulcli |
|- ( 2 x. _pi ) e. RR |
| 4 |
3
|
rexri |
|- ( 2 x. _pi ) e. RR* |
| 5 |
|
elico2 |
|- ( ( _pi e. RR /\ ( 2 x. _pi ) e. RR* ) -> ( A e. ( _pi [,) ( 2 x. _pi ) ) <-> ( A e. RR /\ _pi <_ A /\ A < ( 2 x. _pi ) ) ) ) |
| 6 |
1 4 5
|
mp2an |
|- ( A e. ( _pi [,) ( 2 x. _pi ) ) <-> ( A e. RR /\ _pi <_ A /\ A < ( 2 x. _pi ) ) ) |
| 7 |
6
|
simp1bi |
|- ( A e. ( _pi [,) ( 2 x. _pi ) ) -> A e. RR ) |
| 8 |
|
0red |
|- ( A e. ( _pi [,) ( 2 x. _pi ) ) -> 0 e. RR ) |
| 9 |
1
|
a1i |
|- ( A e. ( _pi [,) ( 2 x. _pi ) ) -> _pi e. RR ) |
| 10 |
|
pipos |
|- 0 < _pi |
| 11 |
10
|
a1i |
|- ( A e. ( _pi [,) ( 2 x. _pi ) ) -> 0 < _pi ) |
| 12 |
6
|
simp2bi |
|- ( A e. ( _pi [,) ( 2 x. _pi ) ) -> _pi <_ A ) |
| 13 |
8 9 7 11 12
|
ltletrd |
|- ( A e. ( _pi [,) ( 2 x. _pi ) ) -> 0 < A ) |
| 14 |
6
|
simp3bi |
|- ( A e. ( _pi [,) ( 2 x. _pi ) ) -> A < ( 2 x. _pi ) ) |
| 15 |
|
0xr |
|- 0 e. RR* |
| 16 |
|
elioo2 |
|- ( ( 0 e. RR* /\ ( 2 x. _pi ) e. RR* ) -> ( A e. ( 0 (,) ( 2 x. _pi ) ) <-> ( A e. RR /\ 0 < A /\ A < ( 2 x. _pi ) ) ) ) |
| 17 |
15 4 16
|
mp2an |
|- ( A e. ( 0 (,) ( 2 x. _pi ) ) <-> ( A e. RR /\ 0 < A /\ A < ( 2 x. _pi ) ) ) |
| 18 |
7 13 14 17
|
syl3anbrc |
|- ( A e. ( _pi [,) ( 2 x. _pi ) ) -> A e. ( 0 (,) ( 2 x. _pi ) ) ) |
| 19 |
|
cos02pilt1 |
|- ( A e. ( 0 (,) ( 2 x. _pi ) ) -> ( cos ` A ) < 1 ) |
| 20 |
18 19
|
syl |
|- ( A e. ( _pi [,) ( 2 x. _pi ) ) -> ( cos ` A ) < 1 ) |