| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							coss12d.a | 
							 |-  ( ph -> A C_ B )  | 
						
						
							| 2 | 
							
								
							 | 
							coss12d.c | 
							 |-  ( ph -> C C_ D )  | 
						
						
							| 3 | 
							
								2
							 | 
							ssbrd | 
							 |-  ( ph -> ( x C y -> x D y ) )  | 
						
						
							| 4 | 
							
								1
							 | 
							ssbrd | 
							 |-  ( ph -> ( y A z -> y B z ) )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							anim12d | 
							 |-  ( ph -> ( ( x C y /\ y A z ) -> ( x D y /\ y B z ) ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							eximdv | 
							 |-  ( ph -> ( E. y ( x C y /\ y A z ) -> E. y ( x D y /\ y B z ) ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							ssopab2dv | 
							 |-  ( ph -> { <. x , z >. | E. y ( x C y /\ y A z ) } C_ { <. x , z >. | E. y ( x D y /\ y B z ) } ) | 
						
						
							| 8 | 
							
								
							 | 
							df-co | 
							 |-  ( A o. C ) = { <. x , z >. | E. y ( x C y /\ y A z ) } | 
						
						
							| 9 | 
							
								
							 | 
							df-co | 
							 |-  ( B o. D ) = { <. x , z >. | E. y ( x D y /\ y B z ) } | 
						
						
							| 10 | 
							
								7 8 9
							 | 
							3sstr4g | 
							 |-  ( ph -> ( A o. C ) C_ ( B o. D ) )  |