Step |
Hyp |
Ref |
Expression |
1 |
|
df-coss |
|- ,~ `' R = { <. x , y >. | E. u ( u `' R x /\ u `' R y ) } |
2 |
|
brcnvg |
|- ( ( u e. _V /\ x e. _V ) -> ( u `' R x <-> x R u ) ) |
3 |
2
|
el2v |
|- ( u `' R x <-> x R u ) |
4 |
|
brcnvg |
|- ( ( u e. _V /\ y e. _V ) -> ( u `' R y <-> y R u ) ) |
5 |
4
|
el2v |
|- ( u `' R y <-> y R u ) |
6 |
3 5
|
anbi12i |
|- ( ( u `' R x /\ u `' R y ) <-> ( x R u /\ y R u ) ) |
7 |
6
|
exbii |
|- ( E. u ( u `' R x /\ u `' R y ) <-> E. u ( x R u /\ y R u ) ) |
8 |
7
|
opabbii |
|- { <. x , y >. | E. u ( u `' R x /\ u `' R y ) } = { <. x , y >. | E. u ( x R u /\ y R u ) } |
9 |
1 8
|
eqtri |
|- ,~ `' R = { <. x , y >. | E. u ( x R u /\ y R u ) } |