Description: If A is a set then the class of cosets by A is a set. (Contributed by Peter Mazsa, 4-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cossex | |- ( A e. V -> ,~ A e. _V )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dfcoss3 | |- ,~ A = ( A o. `' A )  | 
						|
| 2 | cnvexg | |- ( A e. V -> `' A e. _V )  | 
						|
| 3 | coexg | |- ( ( A e. V /\ `' A e. _V ) -> ( A o. `' A ) e. _V )  | 
						|
| 4 | 2 3 | mpdan | |- ( A e. V -> ( A o. `' A ) e. _V )  | 
						
| 5 | 1 4 | eqeltrid | |- ( A e. V -> ,~ A e. _V )  |