| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							iss2 | 
							 |-  ( ,~ R C_ _I <-> ,~ R = ( _I i^i ( dom ,~ R X. ran ,~ R ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							refrelcoss2 | 
							 |-  ( ( _I i^i ( dom ,~ R X. ran ,~ R ) ) C_ ,~ R /\ Rel ,~ R )  | 
						
						
							| 3 | 
							
								2
							 | 
							simpli | 
							 |-  ( _I i^i ( dom ,~ R X. ran ,~ R ) ) C_ ,~ R  | 
						
						
							| 4 | 
							
								
							 | 
							eqss | 
							 |-  ( ,~ R = ( _I i^i ( dom ,~ R X. ran ,~ R ) ) <-> ( ,~ R C_ ( _I i^i ( dom ,~ R X. ran ,~ R ) ) /\ ( _I i^i ( dom ,~ R X. ran ,~ R ) ) C_ ,~ R ) )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							mpbiran2 | 
							 |-  ( ,~ R = ( _I i^i ( dom ,~ R X. ran ,~ R ) ) <-> ,~ R C_ ( _I i^i ( dom ,~ R X. ran ,~ R ) ) )  | 
						
						
							| 6 | 
							
								1 5
							 | 
							bitri | 
							 |-  ( ,~ R C_ _I <-> ,~ R C_ ( _I i^i ( dom ,~ R X. ran ,~ R ) ) )  |