| Step | Hyp | Ref | Expression | 
						
							| 1 |  | negcl |  |-  ( B e. CC -> -u B e. CC ) | 
						
							| 2 |  | cosadd |  |-  ( ( A e. CC /\ -u B e. CC ) -> ( cos ` ( A + -u B ) ) = ( ( ( cos ` A ) x. ( cos ` -u B ) ) - ( ( sin ` A ) x. ( sin ` -u B ) ) ) ) | 
						
							| 3 | 1 2 | sylan2 |  |-  ( ( A e. CC /\ B e. CC ) -> ( cos ` ( A + -u B ) ) = ( ( ( cos ` A ) x. ( cos ` -u B ) ) - ( ( sin ` A ) x. ( sin ` -u B ) ) ) ) | 
						
							| 4 |  | negsub |  |-  ( ( A e. CC /\ B e. CC ) -> ( A + -u B ) = ( A - B ) ) | 
						
							| 5 | 4 | fveq2d |  |-  ( ( A e. CC /\ B e. CC ) -> ( cos ` ( A + -u B ) ) = ( cos ` ( A - B ) ) ) | 
						
							| 6 |  | cosneg |  |-  ( B e. CC -> ( cos ` -u B ) = ( cos ` B ) ) | 
						
							| 7 | 6 | adantl |  |-  ( ( A e. CC /\ B e. CC ) -> ( cos ` -u B ) = ( cos ` B ) ) | 
						
							| 8 | 7 | oveq2d |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( cos ` A ) x. ( cos ` -u B ) ) = ( ( cos ` A ) x. ( cos ` B ) ) ) | 
						
							| 9 |  | sinneg |  |-  ( B e. CC -> ( sin ` -u B ) = -u ( sin ` B ) ) | 
						
							| 10 | 9 | adantl |  |-  ( ( A e. CC /\ B e. CC ) -> ( sin ` -u B ) = -u ( sin ` B ) ) | 
						
							| 11 | 10 | oveq2d |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( sin ` A ) x. ( sin ` -u B ) ) = ( ( sin ` A ) x. -u ( sin ` B ) ) ) | 
						
							| 12 |  | sincl |  |-  ( A e. CC -> ( sin ` A ) e. CC ) | 
						
							| 13 |  | sincl |  |-  ( B e. CC -> ( sin ` B ) e. CC ) | 
						
							| 14 |  | mulneg2 |  |-  ( ( ( sin ` A ) e. CC /\ ( sin ` B ) e. CC ) -> ( ( sin ` A ) x. -u ( sin ` B ) ) = -u ( ( sin ` A ) x. ( sin ` B ) ) ) | 
						
							| 15 | 12 13 14 | syl2an |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( sin ` A ) x. -u ( sin ` B ) ) = -u ( ( sin ` A ) x. ( sin ` B ) ) ) | 
						
							| 16 | 11 15 | eqtrd |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( sin ` A ) x. ( sin ` -u B ) ) = -u ( ( sin ` A ) x. ( sin ` B ) ) ) | 
						
							| 17 | 8 16 | oveq12d |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( ( cos ` A ) x. ( cos ` -u B ) ) - ( ( sin ` A ) x. ( sin ` -u B ) ) ) = ( ( ( cos ` A ) x. ( cos ` B ) ) - -u ( ( sin ` A ) x. ( sin ` B ) ) ) ) | 
						
							| 18 |  | coscl |  |-  ( A e. CC -> ( cos ` A ) e. CC ) | 
						
							| 19 |  | coscl |  |-  ( B e. CC -> ( cos ` B ) e. CC ) | 
						
							| 20 |  | mulcl |  |-  ( ( ( cos ` A ) e. CC /\ ( cos ` B ) e. CC ) -> ( ( cos ` A ) x. ( cos ` B ) ) e. CC ) | 
						
							| 21 | 18 19 20 | syl2an |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( cos ` A ) x. ( cos ` B ) ) e. CC ) | 
						
							| 22 |  | mulcl |  |-  ( ( ( sin ` A ) e. CC /\ ( sin ` B ) e. CC ) -> ( ( sin ` A ) x. ( sin ` B ) ) e. CC ) | 
						
							| 23 | 12 13 22 | syl2an |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( sin ` A ) x. ( sin ` B ) ) e. CC ) | 
						
							| 24 | 21 23 | subnegd |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( ( cos ` A ) x. ( cos ` B ) ) - -u ( ( sin ` A ) x. ( sin ` B ) ) ) = ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( sin ` A ) x. ( sin ` B ) ) ) ) | 
						
							| 25 | 17 24 | eqtrd |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( ( cos ` A ) x. ( cos ` -u B ) ) - ( ( sin ` A ) x. ( sin ` -u B ) ) ) = ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( sin ` A ) x. ( sin ` B ) ) ) ) | 
						
							| 26 | 3 5 25 | 3eqtr3d |  |-  ( ( A e. CC /\ B e. CC ) -> ( cos ` ( A - B ) ) = ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( sin ` A ) x. ( sin ` B ) ) ) ) |