Step |
Hyp |
Ref |
Expression |
1 |
|
relco |
|- Rel ( A o. B ) |
2 |
|
relssdmrn |
|- ( Rel ( A o. B ) -> ( A o. B ) C_ ( dom ( A o. B ) X. ran ( A o. B ) ) ) |
3 |
1 2
|
ax-mp |
|- ( A o. B ) C_ ( dom ( A o. B ) X. ran ( A o. B ) ) |
4 |
|
dmcoss |
|- dom ( A o. B ) C_ dom B |
5 |
|
rncoss |
|- ran ( A o. B ) C_ ran A |
6 |
|
xpss12 |
|- ( ( dom ( A o. B ) C_ dom B /\ ran ( A o. B ) C_ ran A ) -> ( dom ( A o. B ) X. ran ( A o. B ) ) C_ ( dom B X. ran A ) ) |
7 |
4 5 6
|
mp2an |
|- ( dom ( A o. B ) X. ran ( A o. B ) ) C_ ( dom B X. ran A ) |
8 |
3 7
|
sstri |
|- ( A o. B ) C_ ( dom B X. ran A ) |