Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|- ( x = A -> ( _i x. x ) = ( _i x. A ) ) |
2 |
1
|
fveq2d |
|- ( x = A -> ( exp ` ( _i x. x ) ) = ( exp ` ( _i x. A ) ) ) |
3 |
|
oveq2 |
|- ( x = A -> ( -u _i x. x ) = ( -u _i x. A ) ) |
4 |
3
|
fveq2d |
|- ( x = A -> ( exp ` ( -u _i x. x ) ) = ( exp ` ( -u _i x. A ) ) ) |
5 |
2 4
|
oveq12d |
|- ( x = A -> ( ( exp ` ( _i x. x ) ) + ( exp ` ( -u _i x. x ) ) ) = ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) ) |
6 |
5
|
oveq1d |
|- ( x = A -> ( ( ( exp ` ( _i x. x ) ) + ( exp ` ( -u _i x. x ) ) ) / 2 ) = ( ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) / 2 ) ) |
7 |
|
df-cos |
|- cos = ( x e. CC |-> ( ( ( exp ` ( _i x. x ) ) + ( exp ` ( -u _i x. x ) ) ) / 2 ) ) |
8 |
|
ovex |
|- ( ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) / 2 ) e. _V |
9 |
6 7 8
|
fvmpt |
|- ( A e. CC -> ( cos ` A ) = ( ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) / 2 ) ) |