Metamath Proof Explorer


Theorem cotr3

Description: Two ways of saying a relation is transitive. (Contributed by RP, 22-Mar-2020)

Ref Expression
Hypotheses cotr3.a
|- A = dom R
cotr3.b
|- B = ( A i^i C )
cotr3.c
|- C = ran R
Assertion cotr3
|- ( ( R o. R ) C_ R <-> A. x e. A A. y e. B A. z e. C ( ( x R y /\ y R z ) -> x R z ) )

Proof

Step Hyp Ref Expression
1 cotr3.a
 |-  A = dom R
2 cotr3.b
 |-  B = ( A i^i C )
3 cotr3.c
 |-  C = ran R
4 1 eqimss2i
 |-  dom R C_ A
5 1 3 ineq12i
 |-  ( A i^i C ) = ( dom R i^i ran R )
6 2 5 eqtri
 |-  B = ( dom R i^i ran R )
7 6 eqimss2i
 |-  ( dom R i^i ran R ) C_ B
8 3 eqimss2i
 |-  ran R C_ C
9 4 7 8 cotr2
 |-  ( ( R o. R ) C_ R <-> A. x e. A A. y e. B A. z e. C ( ( x R y /\ y R z ) -> x R z ) )