Description: Two ways of saying a relation is transitive. (Contributed by RP, 22-Mar-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cotr3.a | |- A = dom R |
|
cotr3.b | |- B = ( A i^i C ) |
||
cotr3.c | |- C = ran R |
||
Assertion | cotr3 | |- ( ( R o. R ) C_ R <-> A. x e. A A. y e. B A. z e. C ( ( x R y /\ y R z ) -> x R z ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cotr3.a | |- A = dom R |
|
2 | cotr3.b | |- B = ( A i^i C ) |
|
3 | cotr3.c | |- C = ran R |
|
4 | 1 | eqimss2i | |- dom R C_ A |
5 | 1 3 | ineq12i | |- ( A i^i C ) = ( dom R i^i ran R ) |
6 | 2 5 | eqtri | |- B = ( dom R i^i ran R ) |
7 | 6 | eqimss2i | |- ( dom R i^i ran R ) C_ B |
8 | 3 | eqimss2i | |- ran R C_ C |
9 | 4 7 8 | cotr2 | |- ( ( R o. R ) C_ R <-> A. x e. A A. y e. B A. z e. C ( ( x R y /\ y R z ) -> x R z ) ) |