Metamath Proof Explorer


Theorem cph2di

Description: Distributive law for inner product. Complex version of ip2di . (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses cphipcj.h
|- ., = ( .i ` W )
cphipcj.v
|- V = ( Base ` W )
cphdir.P
|- .+ = ( +g ` W )
cph2di.1
|- ( ph -> W e. CPreHil )
cph2di.2
|- ( ph -> A e. V )
cph2di.3
|- ( ph -> B e. V )
cph2di.4
|- ( ph -> C e. V )
cph2di.5
|- ( ph -> D e. V )
Assertion cph2di
|- ( ph -> ( ( A .+ B ) ., ( C .+ D ) ) = ( ( ( A ., C ) + ( B ., D ) ) + ( ( A ., D ) + ( B ., C ) ) ) )

Proof

Step Hyp Ref Expression
1 cphipcj.h
 |-  ., = ( .i ` W )
2 cphipcj.v
 |-  V = ( Base ` W )
3 cphdir.P
 |-  .+ = ( +g ` W )
4 cph2di.1
 |-  ( ph -> W e. CPreHil )
5 cph2di.2
 |-  ( ph -> A e. V )
6 cph2di.3
 |-  ( ph -> B e. V )
7 cph2di.4
 |-  ( ph -> C e. V )
8 cph2di.5
 |-  ( ph -> D e. V )
9 eqid
 |-  ( Scalar ` W ) = ( Scalar ` W )
10 eqid
 |-  ( +g ` ( Scalar ` W ) ) = ( +g ` ( Scalar ` W ) )
11 cphphl
 |-  ( W e. CPreHil -> W e. PreHil )
12 4 11 syl
 |-  ( ph -> W e. PreHil )
13 9 1 2 3 10 12 5 6 7 8 ip2di
 |-  ( ph -> ( ( A .+ B ) ., ( C .+ D ) ) = ( ( ( A ., C ) ( +g ` ( Scalar ` W ) ) ( B ., D ) ) ( +g ` ( Scalar ` W ) ) ( ( A ., D ) ( +g ` ( Scalar ` W ) ) ( B ., C ) ) ) )
14 cphclm
 |-  ( W e. CPreHil -> W e. CMod )
15 9 clmadd
 |-  ( W e. CMod -> + = ( +g ` ( Scalar ` W ) ) )
16 4 14 15 3syl
 |-  ( ph -> + = ( +g ` ( Scalar ` W ) ) )
17 16 oveqd
 |-  ( ph -> ( ( A ., C ) + ( B ., D ) ) = ( ( A ., C ) ( +g ` ( Scalar ` W ) ) ( B ., D ) ) )
18 16 oveqd
 |-  ( ph -> ( ( A ., D ) + ( B ., C ) ) = ( ( A ., D ) ( +g ` ( Scalar ` W ) ) ( B ., C ) ) )
19 16 17 18 oveq123d
 |-  ( ph -> ( ( ( A ., C ) + ( B ., D ) ) + ( ( A ., D ) + ( B ., C ) ) ) = ( ( ( A ., C ) ( +g ` ( Scalar ` W ) ) ( B ., D ) ) ( +g ` ( Scalar ` W ) ) ( ( A ., D ) ( +g ` ( Scalar ` W ) ) ( B ., C ) ) ) )
20 13 19 eqtr4d
 |-  ( ph -> ( ( A .+ B ) ., ( C .+ D ) ) = ( ( ( A ., C ) + ( B ., D ) ) + ( ( A ., D ) + ( B ., C ) ) ) )