Step |
Hyp |
Ref |
Expression |
1 |
|
cphipcj.h |
|- ., = ( .i ` W ) |
2 |
|
cphipcj.v |
|- V = ( Base ` W ) |
3 |
|
cphsubdir.m |
|- .- = ( -g ` W ) |
4 |
|
cph2subdi.1 |
|- ( ph -> W e. CPreHil ) |
5 |
|
cph2subdi.2 |
|- ( ph -> A e. V ) |
6 |
|
cph2subdi.3 |
|- ( ph -> B e. V ) |
7 |
|
cph2subdi.4 |
|- ( ph -> C e. V ) |
8 |
|
cph2subdi.5 |
|- ( ph -> D e. V ) |
9 |
|
cphclm |
|- ( W e. CPreHil -> W e. CMod ) |
10 |
4 9
|
syl |
|- ( ph -> W e. CMod ) |
11 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
12 |
11
|
clmadd |
|- ( W e. CMod -> + = ( +g ` ( Scalar ` W ) ) ) |
13 |
10 12
|
syl |
|- ( ph -> + = ( +g ` ( Scalar ` W ) ) ) |
14 |
13
|
oveqd |
|- ( ph -> ( ( A ., C ) + ( B ., D ) ) = ( ( A ., C ) ( +g ` ( Scalar ` W ) ) ( B ., D ) ) ) |
15 |
13
|
oveqd |
|- ( ph -> ( ( A ., D ) + ( B ., C ) ) = ( ( A ., D ) ( +g ` ( Scalar ` W ) ) ( B ., C ) ) ) |
16 |
14 15
|
oveq12d |
|- ( ph -> ( ( ( A ., C ) + ( B ., D ) ) ( -g ` ( Scalar ` W ) ) ( ( A ., D ) + ( B ., C ) ) ) = ( ( ( A ., C ) ( +g ` ( Scalar ` W ) ) ( B ., D ) ) ( -g ` ( Scalar ` W ) ) ( ( A ., D ) ( +g ` ( Scalar ` W ) ) ( B ., C ) ) ) ) |
17 |
|
cphphl |
|- ( W e. CPreHil -> W e. PreHil ) |
18 |
4 17
|
syl |
|- ( ph -> W e. PreHil ) |
19 |
|
eqid |
|- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
20 |
11 1 2 19
|
ipcl |
|- ( ( W e. PreHil /\ A e. V /\ C e. V ) -> ( A ., C ) e. ( Base ` ( Scalar ` W ) ) ) |
21 |
18 5 7 20
|
syl3anc |
|- ( ph -> ( A ., C ) e. ( Base ` ( Scalar ` W ) ) ) |
22 |
11 1 2 19
|
ipcl |
|- ( ( W e. PreHil /\ B e. V /\ D e. V ) -> ( B ., D ) e. ( Base ` ( Scalar ` W ) ) ) |
23 |
18 6 8 22
|
syl3anc |
|- ( ph -> ( B ., D ) e. ( Base ` ( Scalar ` W ) ) ) |
24 |
11 19
|
clmacl |
|- ( ( W e. CMod /\ ( A ., C ) e. ( Base ` ( Scalar ` W ) ) /\ ( B ., D ) e. ( Base ` ( Scalar ` W ) ) ) -> ( ( A ., C ) + ( B ., D ) ) e. ( Base ` ( Scalar ` W ) ) ) |
25 |
10 21 23 24
|
syl3anc |
|- ( ph -> ( ( A ., C ) + ( B ., D ) ) e. ( Base ` ( Scalar ` W ) ) ) |
26 |
11 1 2 19
|
ipcl |
|- ( ( W e. PreHil /\ A e. V /\ D e. V ) -> ( A ., D ) e. ( Base ` ( Scalar ` W ) ) ) |
27 |
18 5 8 26
|
syl3anc |
|- ( ph -> ( A ., D ) e. ( Base ` ( Scalar ` W ) ) ) |
28 |
11 1 2 19
|
ipcl |
|- ( ( W e. PreHil /\ B e. V /\ C e. V ) -> ( B ., C ) e. ( Base ` ( Scalar ` W ) ) ) |
29 |
18 6 7 28
|
syl3anc |
|- ( ph -> ( B ., C ) e. ( Base ` ( Scalar ` W ) ) ) |
30 |
11 19
|
clmacl |
|- ( ( W e. CMod /\ ( A ., D ) e. ( Base ` ( Scalar ` W ) ) /\ ( B ., C ) e. ( Base ` ( Scalar ` W ) ) ) -> ( ( A ., D ) + ( B ., C ) ) e. ( Base ` ( Scalar ` W ) ) ) |
31 |
10 27 29 30
|
syl3anc |
|- ( ph -> ( ( A ., D ) + ( B ., C ) ) e. ( Base ` ( Scalar ` W ) ) ) |
32 |
11 19
|
clmsub |
|- ( ( W e. CMod /\ ( ( A ., C ) + ( B ., D ) ) e. ( Base ` ( Scalar ` W ) ) /\ ( ( A ., D ) + ( B ., C ) ) e. ( Base ` ( Scalar ` W ) ) ) -> ( ( ( A ., C ) + ( B ., D ) ) - ( ( A ., D ) + ( B ., C ) ) ) = ( ( ( A ., C ) + ( B ., D ) ) ( -g ` ( Scalar ` W ) ) ( ( A ., D ) + ( B ., C ) ) ) ) |
33 |
10 25 31 32
|
syl3anc |
|- ( ph -> ( ( ( A ., C ) + ( B ., D ) ) - ( ( A ., D ) + ( B ., C ) ) ) = ( ( ( A ., C ) + ( B ., D ) ) ( -g ` ( Scalar ` W ) ) ( ( A ., D ) + ( B ., C ) ) ) ) |
34 |
|
eqid |
|- ( -g ` ( Scalar ` W ) ) = ( -g ` ( Scalar ` W ) ) |
35 |
|
eqid |
|- ( +g ` ( Scalar ` W ) ) = ( +g ` ( Scalar ` W ) ) |
36 |
11 1 2 3 34 35 18 5 6 7 8
|
ip2subdi |
|- ( ph -> ( ( A .- B ) ., ( C .- D ) ) = ( ( ( A ., C ) ( +g ` ( Scalar ` W ) ) ( B ., D ) ) ( -g ` ( Scalar ` W ) ) ( ( A ., D ) ( +g ` ( Scalar ` W ) ) ( B ., C ) ) ) ) |
37 |
16 33 36
|
3eqtr4rd |
|- ( ph -> ( ( A .- B ) ., ( C .- D ) ) = ( ( ( A ., C ) + ( B ., D ) ) - ( ( A ., D ) + ( B ., C ) ) ) ) |