| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cphsca.f |  |-  F = ( Scalar ` W ) | 
						
							| 2 |  | cphsca.k |  |-  K = ( Base ` F ) | 
						
							| 3 | 1 2 | cphsubrg |  |-  ( W e. CPreHil -> K e. ( SubRing ` CCfld ) ) | 
						
							| 4 |  | cnfldbas |  |-  CC = ( Base ` CCfld ) | 
						
							| 5 | 4 | subrgss |  |-  ( K e. ( SubRing ` CCfld ) -> K C_ CC ) | 
						
							| 6 | 3 5 | syl |  |-  ( W e. CPreHil -> K C_ CC ) | 
						
							| 7 | 6 | sselda |  |-  ( ( W e. CPreHil /\ A e. K ) -> A e. CC ) | 
						
							| 8 |  | absval |  |-  ( A e. CC -> ( abs ` A ) = ( sqrt ` ( A x. ( * ` A ) ) ) ) | 
						
							| 9 | 7 8 | syl |  |-  ( ( W e. CPreHil /\ A e. K ) -> ( abs ` A ) = ( sqrt ` ( A x. ( * ` A ) ) ) ) | 
						
							| 10 |  | simpl |  |-  ( ( W e. CPreHil /\ A e. K ) -> W e. CPreHil ) | 
						
							| 11 | 3 | adantr |  |-  ( ( W e. CPreHil /\ A e. K ) -> K e. ( SubRing ` CCfld ) ) | 
						
							| 12 |  | simpr |  |-  ( ( W e. CPreHil /\ A e. K ) -> A e. K ) | 
						
							| 13 | 1 2 | cphcjcl |  |-  ( ( W e. CPreHil /\ A e. K ) -> ( * ` A ) e. K ) | 
						
							| 14 |  | cnfldmul |  |-  x. = ( .r ` CCfld ) | 
						
							| 15 | 14 | subrgmcl |  |-  ( ( K e. ( SubRing ` CCfld ) /\ A e. K /\ ( * ` A ) e. K ) -> ( A x. ( * ` A ) ) e. K ) | 
						
							| 16 | 11 12 13 15 | syl3anc |  |-  ( ( W e. CPreHil /\ A e. K ) -> ( A x. ( * ` A ) ) e. K ) | 
						
							| 17 | 7 | cjmulrcld |  |-  ( ( W e. CPreHil /\ A e. K ) -> ( A x. ( * ` A ) ) e. RR ) | 
						
							| 18 | 7 | cjmulge0d |  |-  ( ( W e. CPreHil /\ A e. K ) -> 0 <_ ( A x. ( * ` A ) ) ) | 
						
							| 19 | 1 2 | cphsqrtcl |  |-  ( ( W e. CPreHil /\ ( ( A x. ( * ` A ) ) e. K /\ ( A x. ( * ` A ) ) e. RR /\ 0 <_ ( A x. ( * ` A ) ) ) ) -> ( sqrt ` ( A x. ( * ` A ) ) ) e. K ) | 
						
							| 20 | 10 16 17 18 19 | syl13anc |  |-  ( ( W e. CPreHil /\ A e. K ) -> ( sqrt ` ( A x. ( * ` A ) ) ) e. K ) | 
						
							| 21 | 9 20 | eqeltrd |  |-  ( ( W e. CPreHil /\ A e. K ) -> ( abs ` A ) e. K ) |