Step |
Hyp |
Ref |
Expression |
1 |
|
cphsca.f |
|- F = ( Scalar ` W ) |
2 |
|
cphsca.k |
|- K = ( Base ` F ) |
3 |
1 2
|
cphsubrg |
|- ( W e. CPreHil -> K e. ( SubRing ` CCfld ) ) |
4 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
5 |
4
|
subrgss |
|- ( K e. ( SubRing ` CCfld ) -> K C_ CC ) |
6 |
3 5
|
syl |
|- ( W e. CPreHil -> K C_ CC ) |
7 |
6
|
sselda |
|- ( ( W e. CPreHil /\ A e. K ) -> A e. CC ) |
8 |
|
absval |
|- ( A e. CC -> ( abs ` A ) = ( sqrt ` ( A x. ( * ` A ) ) ) ) |
9 |
7 8
|
syl |
|- ( ( W e. CPreHil /\ A e. K ) -> ( abs ` A ) = ( sqrt ` ( A x. ( * ` A ) ) ) ) |
10 |
|
simpl |
|- ( ( W e. CPreHil /\ A e. K ) -> W e. CPreHil ) |
11 |
3
|
adantr |
|- ( ( W e. CPreHil /\ A e. K ) -> K e. ( SubRing ` CCfld ) ) |
12 |
|
simpr |
|- ( ( W e. CPreHil /\ A e. K ) -> A e. K ) |
13 |
1 2
|
cphcjcl |
|- ( ( W e. CPreHil /\ A e. K ) -> ( * ` A ) e. K ) |
14 |
|
cnfldmul |
|- x. = ( .r ` CCfld ) |
15 |
14
|
subrgmcl |
|- ( ( K e. ( SubRing ` CCfld ) /\ A e. K /\ ( * ` A ) e. K ) -> ( A x. ( * ` A ) ) e. K ) |
16 |
11 12 13 15
|
syl3anc |
|- ( ( W e. CPreHil /\ A e. K ) -> ( A x. ( * ` A ) ) e. K ) |
17 |
7
|
cjmulrcld |
|- ( ( W e. CPreHil /\ A e. K ) -> ( A x. ( * ` A ) ) e. RR ) |
18 |
7
|
cjmulge0d |
|- ( ( W e. CPreHil /\ A e. K ) -> 0 <_ ( A x. ( * ` A ) ) ) |
19 |
1 2
|
cphsqrtcl |
|- ( ( W e. CPreHil /\ ( ( A x. ( * ` A ) ) e. K /\ ( A x. ( * ` A ) ) e. RR /\ 0 <_ ( A x. ( * ` A ) ) ) ) -> ( sqrt ` ( A x. ( * ` A ) ) ) e. K ) |
20 |
10 16 17 18 19
|
syl13anc |
|- ( ( W e. CPreHil /\ A e. K ) -> ( sqrt ` ( A x. ( * ` A ) ) ) e. K ) |
21 |
9 20
|
eqeltrd |
|- ( ( W e. CPreHil /\ A e. K ) -> ( abs ` A ) e. K ) |