Metamath Proof Explorer


Theorem cphabscl

Description: The scalar field of a subcomplex pre-Hilbert space is closed under the absolute value operation. (Contributed by Mario Carneiro, 11-Oct-2015)

Ref Expression
Hypotheses cphsca.f
|- F = ( Scalar ` W )
cphsca.k
|- K = ( Base ` F )
Assertion cphabscl
|- ( ( W e. CPreHil /\ A e. K ) -> ( abs ` A ) e. K )

Proof

Step Hyp Ref Expression
1 cphsca.f
 |-  F = ( Scalar ` W )
2 cphsca.k
 |-  K = ( Base ` F )
3 1 2 cphsubrg
 |-  ( W e. CPreHil -> K e. ( SubRing ` CCfld ) )
4 cnfldbas
 |-  CC = ( Base ` CCfld )
5 4 subrgss
 |-  ( K e. ( SubRing ` CCfld ) -> K C_ CC )
6 3 5 syl
 |-  ( W e. CPreHil -> K C_ CC )
7 6 sselda
 |-  ( ( W e. CPreHil /\ A e. K ) -> A e. CC )
8 absval
 |-  ( A e. CC -> ( abs ` A ) = ( sqrt ` ( A x. ( * ` A ) ) ) )
9 7 8 syl
 |-  ( ( W e. CPreHil /\ A e. K ) -> ( abs ` A ) = ( sqrt ` ( A x. ( * ` A ) ) ) )
10 simpl
 |-  ( ( W e. CPreHil /\ A e. K ) -> W e. CPreHil )
11 3 adantr
 |-  ( ( W e. CPreHil /\ A e. K ) -> K e. ( SubRing ` CCfld ) )
12 simpr
 |-  ( ( W e. CPreHil /\ A e. K ) -> A e. K )
13 1 2 cphcjcl
 |-  ( ( W e. CPreHil /\ A e. K ) -> ( * ` A ) e. K )
14 cnfldmul
 |-  x. = ( .r ` CCfld )
15 14 subrgmcl
 |-  ( ( K e. ( SubRing ` CCfld ) /\ A e. K /\ ( * ` A ) e. K ) -> ( A x. ( * ` A ) ) e. K )
16 11 12 13 15 syl3anc
 |-  ( ( W e. CPreHil /\ A e. K ) -> ( A x. ( * ` A ) ) e. K )
17 7 cjmulrcld
 |-  ( ( W e. CPreHil /\ A e. K ) -> ( A x. ( * ` A ) ) e. RR )
18 7 cjmulge0d
 |-  ( ( W e. CPreHil /\ A e. K ) -> 0 <_ ( A x. ( * ` A ) ) )
19 1 2 cphsqrtcl
 |-  ( ( W e. CPreHil /\ ( ( A x. ( * ` A ) ) e. K /\ ( A x. ( * ` A ) ) e. RR /\ 0 <_ ( A x. ( * ` A ) ) ) ) -> ( sqrt ` ( A x. ( * ` A ) ) ) e. K )
20 10 16 17 18 19 syl13anc
 |-  ( ( W e. CPreHil /\ A e. K ) -> ( sqrt ` ( A x. ( * ` A ) ) ) e. K )
21 9 20 eqeltrd
 |-  ( ( W e. CPreHil /\ A e. K ) -> ( abs ` A ) e. K )