| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cphipcj.h |
|- ., = ( .i ` W ) |
| 2 |
|
cphipcj.v |
|- V = ( Base ` W ) |
| 3 |
|
cphass.f |
|- F = ( Scalar ` W ) |
| 4 |
|
cphass.k |
|- K = ( Base ` F ) |
| 5 |
|
cphass.s |
|- .x. = ( .s ` W ) |
| 6 |
|
cphphl |
|- ( W e. CPreHil -> W e. PreHil ) |
| 7 |
|
eqid |
|- ( .r ` F ) = ( .r ` F ) |
| 8 |
3 1 2 4 5 7
|
ipass |
|- ( ( W e. PreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> ( ( A .x. B ) ., C ) = ( A ( .r ` F ) ( B ., C ) ) ) |
| 9 |
6 8
|
sylan |
|- ( ( W e. CPreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> ( ( A .x. B ) ., C ) = ( A ( .r ` F ) ( B ., C ) ) ) |
| 10 |
|
cphclm |
|- ( W e. CPreHil -> W e. CMod ) |
| 11 |
3
|
clmmul |
|- ( W e. CMod -> x. = ( .r ` F ) ) |
| 12 |
10 11
|
syl |
|- ( W e. CPreHil -> x. = ( .r ` F ) ) |
| 13 |
12
|
adantr |
|- ( ( W e. CPreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> x. = ( .r ` F ) ) |
| 14 |
13
|
oveqd |
|- ( ( W e. CPreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> ( A x. ( B ., C ) ) = ( A ( .r ` F ) ( B ., C ) ) ) |
| 15 |
9 14
|
eqtr4d |
|- ( ( W e. CPreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> ( ( A .x. B ) ., C ) = ( A x. ( B ., C ) ) ) |