| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cphassi.x |
|- X = ( Base ` W ) |
| 2 |
|
cphassi.s |
|- .x. = ( .s ` W ) |
| 3 |
|
cphassi.i |
|- ., = ( .i ` W ) |
| 4 |
|
cphassi.f |
|- F = ( Scalar ` W ) |
| 5 |
|
cphassi.k |
|- K = ( Base ` F ) |
| 6 |
|
simp1l |
|- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> W e. CPreHil ) |
| 7 |
|
simp1r |
|- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> _i e. K ) |
| 8 |
|
simp2 |
|- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> A e. X ) |
| 9 |
|
simp3 |
|- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> B e. X ) |
| 10 |
3 1 4 5 2
|
cphassr |
|- ( ( W e. CPreHil /\ ( _i e. K /\ A e. X /\ B e. X ) ) -> ( A ., ( _i .x. B ) ) = ( ( * ` _i ) x. ( A ., B ) ) ) |
| 11 |
6 7 8 9 10
|
syl13anc |
|- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( A ., ( _i .x. B ) ) = ( ( * ` _i ) x. ( A ., B ) ) ) |
| 12 |
|
cji |
|- ( * ` _i ) = -u _i |
| 13 |
12
|
oveq1i |
|- ( ( * ` _i ) x. ( A ., B ) ) = ( -u _i x. ( A ., B ) ) |
| 14 |
11 13
|
eqtrdi |
|- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( A ., ( _i .x. B ) ) = ( -u _i x. ( A ., B ) ) ) |