Step |
Hyp |
Ref |
Expression |
1 |
|
cphipcj.h |
|- ., = ( .i ` W ) |
2 |
|
cphipcj.v |
|- V = ( Base ` W ) |
3 |
|
cphass.f |
|- F = ( Scalar ` W ) |
4 |
|
cphass.k |
|- K = ( Base ` F ) |
5 |
|
cphass.s |
|- .x. = ( .s ` W ) |
6 |
|
cphclm |
|- ( W e. CPreHil -> W e. CMod ) |
7 |
6
|
adantr |
|- ( ( W e. CPreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> W e. CMod ) |
8 |
3
|
clmmul |
|- ( W e. CMod -> x. = ( .r ` F ) ) |
9 |
7 8
|
syl |
|- ( ( W e. CPreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> x. = ( .r ` F ) ) |
10 |
|
eqidd |
|- ( ( W e. CPreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> ( B ., C ) = ( B ., C ) ) |
11 |
3
|
clmcj |
|- ( W e. CMod -> * = ( *r ` F ) ) |
12 |
7 11
|
syl |
|- ( ( W e. CPreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> * = ( *r ` F ) ) |
13 |
12
|
fveq1d |
|- ( ( W e. CPreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> ( * ` A ) = ( ( *r ` F ) ` A ) ) |
14 |
9 10 13
|
oveq123d |
|- ( ( W e. CPreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> ( ( B ., C ) x. ( * ` A ) ) = ( ( B ., C ) ( .r ` F ) ( ( *r ` F ) ` A ) ) ) |
15 |
3 4
|
clmsscn |
|- ( W e. CMod -> K C_ CC ) |
16 |
7 15
|
syl |
|- ( ( W e. CPreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> K C_ CC ) |
17 |
|
simpr1 |
|- ( ( W e. CPreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> A e. K ) |
18 |
16 17
|
sseldd |
|- ( ( W e. CPreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> A e. CC ) |
19 |
18
|
cjcld |
|- ( ( W e. CPreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> ( * ` A ) e. CC ) |
20 |
2 1
|
cphipcl |
|- ( ( W e. CPreHil /\ B e. V /\ C e. V ) -> ( B ., C ) e. CC ) |
21 |
20
|
3adant3r1 |
|- ( ( W e. CPreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> ( B ., C ) e. CC ) |
22 |
19 21
|
mulcomd |
|- ( ( W e. CPreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> ( ( * ` A ) x. ( B ., C ) ) = ( ( B ., C ) x. ( * ` A ) ) ) |
23 |
|
cphphl |
|- ( W e. CPreHil -> W e. PreHil ) |
24 |
|
3anrot |
|- ( ( A e. K /\ B e. V /\ C e. V ) <-> ( B e. V /\ C e. V /\ A e. K ) ) |
25 |
24
|
biimpi |
|- ( ( A e. K /\ B e. V /\ C e. V ) -> ( B e. V /\ C e. V /\ A e. K ) ) |
26 |
|
eqid |
|- ( .r ` F ) = ( .r ` F ) |
27 |
|
eqid |
|- ( *r ` F ) = ( *r ` F ) |
28 |
3 1 2 4 5 26 27
|
ipassr |
|- ( ( W e. PreHil /\ ( B e. V /\ C e. V /\ A e. K ) ) -> ( B ., ( A .x. C ) ) = ( ( B ., C ) ( .r ` F ) ( ( *r ` F ) ` A ) ) ) |
29 |
23 25 28
|
syl2an |
|- ( ( W e. CPreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> ( B ., ( A .x. C ) ) = ( ( B ., C ) ( .r ` F ) ( ( *r ` F ) ` A ) ) ) |
30 |
14 22 29
|
3eqtr4rd |
|- ( ( W e. CPreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> ( B ., ( A .x. C ) ) = ( ( * ` A ) x. ( B ., C ) ) ) |