Step |
Hyp |
Ref |
Expression |
1 |
|
cphsca.f |
|- F = ( Scalar ` W ) |
2 |
|
cphsca.k |
|- K = ( Base ` F ) |
3 |
1 2
|
cphsca |
|- ( W e. CPreHil -> F = ( CCfld |`s K ) ) |
4 |
3
|
fveq2d |
|- ( W e. CPreHil -> ( *r ` F ) = ( *r ` ( CCfld |`s K ) ) ) |
5 |
2
|
fvexi |
|- K e. _V |
6 |
|
eqid |
|- ( CCfld |`s K ) = ( CCfld |`s K ) |
7 |
|
cnfldcj |
|- * = ( *r ` CCfld ) |
8 |
6 7
|
ressstarv |
|- ( K e. _V -> * = ( *r ` ( CCfld |`s K ) ) ) |
9 |
5 8
|
ax-mp |
|- * = ( *r ` ( CCfld |`s K ) ) |
10 |
4 9
|
eqtr4di |
|- ( W e. CPreHil -> ( *r ` F ) = * ) |
11 |
10
|
adantr |
|- ( ( W e. CPreHil /\ A e. K ) -> ( *r ` F ) = * ) |
12 |
11
|
fveq1d |
|- ( ( W e. CPreHil /\ A e. K ) -> ( ( *r ` F ) ` A ) = ( * ` A ) ) |
13 |
|
cphphl |
|- ( W e. CPreHil -> W e. PreHil ) |
14 |
1
|
phlsrng |
|- ( W e. PreHil -> F e. *Ring ) |
15 |
13 14
|
syl |
|- ( W e. CPreHil -> F e. *Ring ) |
16 |
|
eqid |
|- ( *r ` F ) = ( *r ` F ) |
17 |
16 2
|
srngcl |
|- ( ( F e. *Ring /\ A e. K ) -> ( ( *r ` F ) ` A ) e. K ) |
18 |
15 17
|
sylan |
|- ( ( W e. CPreHil /\ A e. K ) -> ( ( *r ` F ) ` A ) e. K ) |
19 |
12 18
|
eqeltrrd |
|- ( ( W e. CPreHil /\ A e. K ) -> ( * ` A ) e. K ) |