| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cphlmod |  |-  ( W e. CPreHil -> W e. LMod ) | 
						
							| 2 |  | eqid |  |-  ( Scalar ` W ) = ( Scalar ` W ) | 
						
							| 3 |  | eqid |  |-  ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) | 
						
							| 4 | 2 3 | cphsca |  |-  ( W e. CPreHil -> ( Scalar ` W ) = ( CCfld |`s ( Base ` ( Scalar ` W ) ) ) ) | 
						
							| 5 | 2 3 | cphsubrg |  |-  ( W e. CPreHil -> ( Base ` ( Scalar ` W ) ) e. ( SubRing ` CCfld ) ) | 
						
							| 6 | 2 3 | isclm |  |-  ( W e. CMod <-> ( W e. LMod /\ ( Scalar ` W ) = ( CCfld |`s ( Base ` ( Scalar ` W ) ) ) /\ ( Base ` ( Scalar ` W ) ) e. ( SubRing ` CCfld ) ) ) | 
						
							| 7 | 1 4 5 6 | syl3anbrc |  |-  ( W e. CPreHil -> W e. CMod ) |