Step |
Hyp |
Ref |
Expression |
1 |
|
cphlmod |
|- ( W e. CPreHil -> W e. LMod ) |
2 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
3 |
|
eqid |
|- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
4 |
2 3
|
cphsca |
|- ( W e. CPreHil -> ( Scalar ` W ) = ( CCfld |`s ( Base ` ( Scalar ` W ) ) ) ) |
5 |
2 3
|
cphsubrg |
|- ( W e. CPreHil -> ( Base ` ( Scalar ` W ) ) e. ( SubRing ` CCfld ) ) |
6 |
2 3
|
isclm |
|- ( W e. CMod <-> ( W e. LMod /\ ( Scalar ` W ) = ( CCfld |`s ( Base ` ( Scalar ` W ) ) ) /\ ( Base ` ( Scalar ` W ) ) e. ( SubRing ` CCfld ) ) ) |
7 |
1 4 5 6
|
syl3anbrc |
|- ( W e. CPreHil -> W e. CMod ) |