| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cphsca.f |
|- F = ( Scalar ` W ) |
| 2 |
|
cphsca.k |
|- K = ( Base ` F ) |
| 3 |
1 2
|
cphsubrg |
|- ( W e. CPreHil -> K e. ( SubRing ` CCfld ) ) |
| 4 |
3
|
adantr |
|- ( ( W e. CPreHil /\ ( A e. K /\ B e. K /\ B =/= 0 ) ) -> K e. ( SubRing ` CCfld ) ) |
| 5 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
| 6 |
5
|
subrgss |
|- ( K e. ( SubRing ` CCfld ) -> K C_ CC ) |
| 7 |
4 6
|
syl |
|- ( ( W e. CPreHil /\ ( A e. K /\ B e. K /\ B =/= 0 ) ) -> K C_ CC ) |
| 8 |
|
simpr1 |
|- ( ( W e. CPreHil /\ ( A e. K /\ B e. K /\ B =/= 0 ) ) -> A e. K ) |
| 9 |
7 8
|
sseldd |
|- ( ( W e. CPreHil /\ ( A e. K /\ B e. K /\ B =/= 0 ) ) -> A e. CC ) |
| 10 |
|
simpr2 |
|- ( ( W e. CPreHil /\ ( A e. K /\ B e. K /\ B =/= 0 ) ) -> B e. K ) |
| 11 |
7 10
|
sseldd |
|- ( ( W e. CPreHil /\ ( A e. K /\ B e. K /\ B =/= 0 ) ) -> B e. CC ) |
| 12 |
|
simpr3 |
|- ( ( W e. CPreHil /\ ( A e. K /\ B e. K /\ B =/= 0 ) ) -> B =/= 0 ) |
| 13 |
9 11 12
|
divrecd |
|- ( ( W e. CPreHil /\ ( A e. K /\ B e. K /\ B =/= 0 ) ) -> ( A / B ) = ( A x. ( 1 / B ) ) ) |
| 14 |
1 2
|
cphreccl |
|- ( ( W e. CPreHil /\ B e. K /\ B =/= 0 ) -> ( 1 / B ) e. K ) |
| 15 |
14
|
3adant3r1 |
|- ( ( W e. CPreHil /\ ( A e. K /\ B e. K /\ B =/= 0 ) ) -> ( 1 / B ) e. K ) |
| 16 |
|
cnfldmul |
|- x. = ( .r ` CCfld ) |
| 17 |
16
|
subrgmcl |
|- ( ( K e. ( SubRing ` CCfld ) /\ A e. K /\ ( 1 / B ) e. K ) -> ( A x. ( 1 / B ) ) e. K ) |
| 18 |
4 8 15 17
|
syl3anc |
|- ( ( W e. CPreHil /\ ( A e. K /\ B e. K /\ B =/= 0 ) ) -> ( A x. ( 1 / B ) ) e. K ) |
| 19 |
13 18
|
eqeltrd |
|- ( ( W e. CPreHil /\ ( A e. K /\ B e. K /\ B =/= 0 ) ) -> ( A / B ) e. K ) |