Step |
Hyp |
Ref |
Expression |
1 |
|
cphipcj.h |
|- ., = ( .i ` W ) |
2 |
|
cphipcj.v |
|- V = ( Base ` W ) |
3 |
|
cphip0l.z |
|- .0. = ( 0g ` W ) |
4 |
|
cphphl |
|- ( W e. CPreHil -> W e. PreHil ) |
5 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
6 |
|
eqid |
|- ( 0g ` ( Scalar ` W ) ) = ( 0g ` ( Scalar ` W ) ) |
7 |
5 1 2 6 3
|
ip0l |
|- ( ( W e. PreHil /\ A e. V ) -> ( .0. ., A ) = ( 0g ` ( Scalar ` W ) ) ) |
8 |
4 7
|
sylan |
|- ( ( W e. CPreHil /\ A e. V ) -> ( .0. ., A ) = ( 0g ` ( Scalar ` W ) ) ) |
9 |
|
cphclm |
|- ( W e. CPreHil -> W e. CMod ) |
10 |
5
|
clm0 |
|- ( W e. CMod -> 0 = ( 0g ` ( Scalar ` W ) ) ) |
11 |
9 10
|
syl |
|- ( W e. CPreHil -> 0 = ( 0g ` ( Scalar ` W ) ) ) |
12 |
11
|
adantr |
|- ( ( W e. CPreHil /\ A e. V ) -> 0 = ( 0g ` ( Scalar ` W ) ) ) |
13 |
8 12
|
eqtr4d |
|- ( ( W e. CPreHil /\ A e. V ) -> ( .0. ., A ) = 0 ) |