Step |
Hyp |
Ref |
Expression |
1 |
|
cphipcj.h |
|- ., = ( .i ` W ) |
2 |
|
cphipcj.v |
|- V = ( Base ` W ) |
3 |
|
cphclm |
|- ( W e. CPreHil -> W e. CMod ) |
4 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
5 |
4
|
clmcj |
|- ( W e. CMod -> * = ( *r ` ( Scalar ` W ) ) ) |
6 |
3 5
|
syl |
|- ( W e. CPreHil -> * = ( *r ` ( Scalar ` W ) ) ) |
7 |
6
|
3ad2ant1 |
|- ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> * = ( *r ` ( Scalar ` W ) ) ) |
8 |
7
|
fveq1d |
|- ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> ( * ` ( A ., B ) ) = ( ( *r ` ( Scalar ` W ) ) ` ( A ., B ) ) ) |
9 |
|
cphphl |
|- ( W e. CPreHil -> W e. PreHil ) |
10 |
|
eqid |
|- ( *r ` ( Scalar ` W ) ) = ( *r ` ( Scalar ` W ) ) |
11 |
4 1 2 10
|
ipcj |
|- ( ( W e. PreHil /\ A e. V /\ B e. V ) -> ( ( *r ` ( Scalar ` W ) ) ` ( A ., B ) ) = ( B ., A ) ) |
12 |
9 11
|
syl3an1 |
|- ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> ( ( *r ` ( Scalar ` W ) ) ` ( A ., B ) ) = ( B ., A ) ) |
13 |
8 12
|
eqtrd |
|- ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> ( * ` ( A ., B ) ) = ( B ., A ) ) |