| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nmsq.v |  |-  V = ( Base ` W ) | 
						
							| 2 |  | nmsq.h |  |-  ., = ( .i ` W ) | 
						
							| 3 |  | eqid |  |-  ( Scalar ` W ) = ( Scalar ` W ) | 
						
							| 4 |  | eqid |  |-  ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) | 
						
							| 5 | 3 4 | cphsubrg |  |-  ( W e. CPreHil -> ( Base ` ( Scalar ` W ) ) e. ( SubRing ` CCfld ) ) | 
						
							| 6 |  | cnfldbas |  |-  CC = ( Base ` CCfld ) | 
						
							| 7 | 6 | subrgss |  |-  ( ( Base ` ( Scalar ` W ) ) e. ( SubRing ` CCfld ) -> ( Base ` ( Scalar ` W ) ) C_ CC ) | 
						
							| 8 | 5 7 | syl |  |-  ( W e. CPreHil -> ( Base ` ( Scalar ` W ) ) C_ CC ) | 
						
							| 9 | 8 | 3ad2ant1 |  |-  ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> ( Base ` ( Scalar ` W ) ) C_ CC ) | 
						
							| 10 |  | cphphl |  |-  ( W e. CPreHil -> W e. PreHil ) | 
						
							| 11 | 3 2 1 4 | ipcl |  |-  ( ( W e. PreHil /\ A e. V /\ B e. V ) -> ( A ., B ) e. ( Base ` ( Scalar ` W ) ) ) | 
						
							| 12 | 10 11 | syl3an1 |  |-  ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> ( A ., B ) e. ( Base ` ( Scalar ` W ) ) ) | 
						
							| 13 | 9 12 | sseldd |  |-  ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> ( A ., B ) e. CC ) |