Step |
Hyp |
Ref |
Expression |
1 |
|
nmsq.v |
|- V = ( Base ` W ) |
2 |
|
nmsq.h |
|- ., = ( .i ` W ) |
3 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
4 |
|
eqid |
|- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
5 |
3 4
|
cphsubrg |
|- ( W e. CPreHil -> ( Base ` ( Scalar ` W ) ) e. ( SubRing ` CCfld ) ) |
6 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
7 |
6
|
subrgss |
|- ( ( Base ` ( Scalar ` W ) ) e. ( SubRing ` CCfld ) -> ( Base ` ( Scalar ` W ) ) C_ CC ) |
8 |
5 7
|
syl |
|- ( W e. CPreHil -> ( Base ` ( Scalar ` W ) ) C_ CC ) |
9 |
8
|
3ad2ant1 |
|- ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> ( Base ` ( Scalar ` W ) ) C_ CC ) |
10 |
|
cphphl |
|- ( W e. CPreHil -> W e. PreHil ) |
11 |
3 2 1 4
|
ipcl |
|- ( ( W e. PreHil /\ A e. V /\ B e. V ) -> ( A ., B ) e. ( Base ` ( Scalar ` W ) ) ) |
12 |
10 11
|
syl3an1 |
|- ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> ( A ., B ) e. ( Base ` ( Scalar ` W ) ) ) |
13 |
9 12
|
sseldd |
|- ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> ( A ., B ) e. CC ) |