Step |
Hyp |
Ref |
Expression |
1 |
|
cphipcj.h |
|- ., = ( .i ` W ) |
2 |
|
cphipcj.v |
|- V = ( Base ` W ) |
3 |
|
cphip0l.z |
|- .0. = ( 0g ` W ) |
4 |
|
cphclm |
|- ( W e. CPreHil -> W e. CMod ) |
5 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
6 |
5
|
clm0 |
|- ( W e. CMod -> 0 = ( 0g ` ( Scalar ` W ) ) ) |
7 |
4 6
|
syl |
|- ( W e. CPreHil -> 0 = ( 0g ` ( Scalar ` W ) ) ) |
8 |
7
|
adantr |
|- ( ( W e. CPreHil /\ A e. V ) -> 0 = ( 0g ` ( Scalar ` W ) ) ) |
9 |
8
|
eqeq2d |
|- ( ( W e. CPreHil /\ A e. V ) -> ( ( A ., A ) = 0 <-> ( A ., A ) = ( 0g ` ( Scalar ` W ) ) ) ) |
10 |
|
cphphl |
|- ( W e. CPreHil -> W e. PreHil ) |
11 |
|
eqid |
|- ( 0g ` ( Scalar ` W ) ) = ( 0g ` ( Scalar ` W ) ) |
12 |
5 1 2 11 3
|
ipeq0 |
|- ( ( W e. PreHil /\ A e. V ) -> ( ( A ., A ) = ( 0g ` ( Scalar ` W ) ) <-> A = .0. ) ) |
13 |
10 12
|
sylan |
|- ( ( W e. CPreHil /\ A e. V ) -> ( ( A ., A ) = ( 0g ` ( Scalar ` W ) ) <-> A = .0. ) ) |
14 |
9 13
|
bitrd |
|- ( ( W e. CPreHil /\ A e. V ) -> ( ( A ., A ) = 0 <-> A = .0. ) ) |