Step |
Hyp |
Ref |
Expression |
1 |
|
cphipcj.h |
|- ., = ( .i ` W ) |
2 |
|
cphipcj.v |
|- V = ( Base ` W ) |
3 |
2 1
|
cphipcl |
|- ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> ( A ., B ) e. CC ) |
4 |
|
absval |
|- ( ( A ., B ) e. CC -> ( abs ` ( A ., B ) ) = ( sqrt ` ( ( A ., B ) x. ( * ` ( A ., B ) ) ) ) ) |
5 |
3 4
|
syl |
|- ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> ( abs ` ( A ., B ) ) = ( sqrt ` ( ( A ., B ) x. ( * ` ( A ., B ) ) ) ) ) |
6 |
5
|
oveq1d |
|- ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> ( ( abs ` ( A ., B ) ) ^ 2 ) = ( ( sqrt ` ( ( A ., B ) x. ( * ` ( A ., B ) ) ) ) ^ 2 ) ) |
7 |
3
|
cjcld |
|- ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> ( * ` ( A ., B ) ) e. CC ) |
8 |
3 7
|
mulcld |
|- ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> ( ( A ., B ) x. ( * ` ( A ., B ) ) ) e. CC ) |
9 |
8
|
sqsqrtd |
|- ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> ( ( sqrt ` ( ( A ., B ) x. ( * ` ( A ., B ) ) ) ) ^ 2 ) = ( ( A ., B ) x. ( * ` ( A ., B ) ) ) ) |
10 |
1 2
|
cphipcj |
|- ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> ( * ` ( A ., B ) ) = ( B ., A ) ) |
11 |
10
|
oveq2d |
|- ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> ( ( A ., B ) x. ( * ` ( A ., B ) ) ) = ( ( A ., B ) x. ( B ., A ) ) ) |
12 |
6 9 11
|
3eqtrrd |
|- ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> ( ( A ., B ) x. ( B ., A ) ) = ( ( abs ` ( A ., B ) ) ^ 2 ) ) |