Metamath Proof Explorer


Theorem cphngp

Description: A subcomplex pre-Hilbert space is a normed group. (Contributed by Mario Carneiro, 13-Oct-2015)

Ref Expression
Assertion cphngp
|- ( W e. CPreHil -> W e. NrmGrp )

Proof

Step Hyp Ref Expression
1 cphnlm
 |-  ( W e. CPreHil -> W e. NrmMod )
2 nlmngp
 |-  ( W e. NrmMod -> W e. NrmGrp )
3 1 2 syl
 |-  ( W e. CPreHil -> W e. NrmGrp )