| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
| 2 |
|
eqid |
|- ( .i ` W ) = ( .i ` W ) |
| 3 |
|
eqid |
|- ( norm ` W ) = ( norm ` W ) |
| 4 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
| 5 |
|
eqid |
|- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
| 6 |
1 2 3 4 5
|
iscph |
|- ( W e. CPreHil <-> ( ( W e. PreHil /\ W e. NrmMod /\ ( Scalar ` W ) = ( CCfld |`s ( Base ` ( Scalar ` W ) ) ) ) /\ ( sqrt " ( ( Base ` ( Scalar ` W ) ) i^i ( 0 [,) +oo ) ) ) C_ ( Base ` ( Scalar ` W ) ) /\ ( norm ` W ) = ( x e. ( Base ` W ) |-> ( sqrt ` ( x ( .i ` W ) x ) ) ) ) ) |
| 7 |
6
|
simp1bi |
|- ( W e. CPreHil -> ( W e. PreHil /\ W e. NrmMod /\ ( Scalar ` W ) = ( CCfld |`s ( Base ` ( Scalar ` W ) ) ) ) ) |
| 8 |
7
|
simp2d |
|- ( W e. CPreHil -> W e. NrmMod ) |