Metamath Proof Explorer


Theorem cphnm

Description: The square of the norm is the norm of an inner product in a subcomplex pre-Hilbert space. (Contributed by Mario Carneiro, 7-Oct-2015)

Ref Expression
Hypotheses nmsq.v
|- V = ( Base ` W )
nmsq.h
|- ., = ( .i ` W )
nmsq.n
|- N = ( norm ` W )
Assertion cphnm
|- ( ( W e. CPreHil /\ A e. V ) -> ( N ` A ) = ( sqrt ` ( A ., A ) ) )

Proof

Step Hyp Ref Expression
1 nmsq.v
 |-  V = ( Base ` W )
2 nmsq.h
 |-  ., = ( .i ` W )
3 nmsq.n
 |-  N = ( norm ` W )
4 1 2 3 cphnmfval
 |-  ( W e. CPreHil -> N = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) )
5 4 fveq1d
 |-  ( W e. CPreHil -> ( N ` A ) = ( ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ` A ) )
6 oveq12
 |-  ( ( x = A /\ x = A ) -> ( x ., x ) = ( A ., A ) )
7 6 anidms
 |-  ( x = A -> ( x ., x ) = ( A ., A ) )
8 7 fveq2d
 |-  ( x = A -> ( sqrt ` ( x ., x ) ) = ( sqrt ` ( A ., A ) ) )
9 eqid
 |-  ( x e. V |-> ( sqrt ` ( x ., x ) ) ) = ( x e. V |-> ( sqrt ` ( x ., x ) ) )
10 fvex
 |-  ( sqrt ` ( A ., A ) ) e. _V
11 8 9 10 fvmpt
 |-  ( A e. V -> ( ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ` A ) = ( sqrt ` ( A ., A ) ) )
12 5 11 sylan9eq
 |-  ( ( W e. CPreHil /\ A e. V ) -> ( N ` A ) = ( sqrt ` ( A ., A ) ) )