| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nmsq.v |
|- V = ( Base ` W ) |
| 2 |
|
nmsq.h |
|- ., = ( .i ` W ) |
| 3 |
|
nmsq.n |
|- N = ( norm ` W ) |
| 4 |
1 2 3
|
cphnmfval |
|- ( W e. CPreHil -> N = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) |
| 5 |
4
|
fveq1d |
|- ( W e. CPreHil -> ( N ` A ) = ( ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ` A ) ) |
| 6 |
|
oveq12 |
|- ( ( x = A /\ x = A ) -> ( x ., x ) = ( A ., A ) ) |
| 7 |
6
|
anidms |
|- ( x = A -> ( x ., x ) = ( A ., A ) ) |
| 8 |
7
|
fveq2d |
|- ( x = A -> ( sqrt ` ( x ., x ) ) = ( sqrt ` ( A ., A ) ) ) |
| 9 |
|
eqid |
|- ( x e. V |-> ( sqrt ` ( x ., x ) ) ) = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) |
| 10 |
|
fvex |
|- ( sqrt ` ( A ., A ) ) e. _V |
| 11 |
8 9 10
|
fvmpt |
|- ( A e. V -> ( ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ` A ) = ( sqrt ` ( A ., A ) ) ) |
| 12 |
5 11
|
sylan9eq |
|- ( ( W e. CPreHil /\ A e. V ) -> ( N ` A ) = ( sqrt ` ( A ., A ) ) ) |