Step |
Hyp |
Ref |
Expression |
1 |
|
nmsq.v |
|- V = ( Base ` W ) |
2 |
|
nmsq.h |
|- ., = ( .i ` W ) |
3 |
|
nmsq.n |
|- N = ( norm ` W ) |
4 |
1 2 3
|
cphnmfval |
|- ( W e. CPreHil -> N = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) |
5 |
4
|
fveq1d |
|- ( W e. CPreHil -> ( N ` A ) = ( ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ` A ) ) |
6 |
|
oveq12 |
|- ( ( x = A /\ x = A ) -> ( x ., x ) = ( A ., A ) ) |
7 |
6
|
anidms |
|- ( x = A -> ( x ., x ) = ( A ., A ) ) |
8 |
7
|
fveq2d |
|- ( x = A -> ( sqrt ` ( x ., x ) ) = ( sqrt ` ( A ., A ) ) ) |
9 |
|
eqid |
|- ( x e. V |-> ( sqrt ` ( x ., x ) ) ) = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) |
10 |
|
fvex |
|- ( sqrt ` ( A ., A ) ) e. _V |
11 |
8 9 10
|
fvmpt |
|- ( A e. V -> ( ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ` A ) = ( sqrt ` ( A ., A ) ) ) |
12 |
5 11
|
sylan9eq |
|- ( ( W e. CPreHil /\ A e. V ) -> ( N ` A ) = ( sqrt ` ( A ., A ) ) ) |