Description: The norm of a vector is a member of the scalar field in a subcomplex pre-Hilbert space. (Contributed by Mario Carneiro, 9-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | nmsq.v | |- V = ( Base ` W ) |
|
nmsq.h | |- ., = ( .i ` W ) |
||
nmsq.n | |- N = ( norm ` W ) |
||
cphnmcl.f | |- F = ( Scalar ` W ) |
||
cphnmcl.k | |- K = ( Base ` F ) |
||
Assertion | cphnmcl | |- ( ( W e. CPreHil /\ A e. V ) -> ( N ` A ) e. K ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmsq.v | |- V = ( Base ` W ) |
|
2 | nmsq.h | |- ., = ( .i ` W ) |
|
3 | nmsq.n | |- N = ( norm ` W ) |
|
4 | cphnmcl.f | |- F = ( Scalar ` W ) |
|
5 | cphnmcl.k | |- K = ( Base ` F ) |
|
6 | 1 2 3 4 5 | cphnmf | |- ( W e. CPreHil -> N : V --> K ) |
7 | 6 | ffvelrnda | |- ( ( W e. CPreHil /\ A e. V ) -> ( N ` A ) e. K ) |