Metamath Proof Explorer


Theorem cphnmcl

Description: The norm of a vector is a member of the scalar field in a subcomplex pre-Hilbert space. (Contributed by Mario Carneiro, 9-Oct-2015)

Ref Expression
Hypotheses nmsq.v
|- V = ( Base ` W )
nmsq.h
|- ., = ( .i ` W )
nmsq.n
|- N = ( norm ` W )
cphnmcl.f
|- F = ( Scalar ` W )
cphnmcl.k
|- K = ( Base ` F )
Assertion cphnmcl
|- ( ( W e. CPreHil /\ A e. V ) -> ( N ` A ) e. K )

Proof

Step Hyp Ref Expression
1 nmsq.v
 |-  V = ( Base ` W )
2 nmsq.h
 |-  ., = ( .i ` W )
3 nmsq.n
 |-  N = ( norm ` W )
4 cphnmcl.f
 |-  F = ( Scalar ` W )
5 cphnmcl.k
 |-  K = ( Base ` F )
6 1 2 3 4 5 cphnmf
 |-  ( W e. CPreHil -> N : V --> K )
7 6 ffvelrnda
 |-  ( ( W e. CPreHil /\ A e. V ) -> ( N ` A ) e. K )