| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nmsq.v |
|- V = ( Base ` W ) |
| 2 |
|
nmsq.h |
|- ., = ( .i ` W ) |
| 3 |
|
nmsq.n |
|- N = ( norm ` W ) |
| 4 |
|
cphnmcl.f |
|- F = ( Scalar ` W ) |
| 5 |
|
cphnmcl.k |
|- K = ( Base ` F ) |
| 6 |
1 2 3
|
cphnmfval |
|- ( W e. CPreHil -> N = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) |
| 7 |
|
simpl |
|- ( ( W e. CPreHil /\ x e. V ) -> W e. CPreHil ) |
| 8 |
|
cphphl |
|- ( W e. CPreHil -> W e. PreHil ) |
| 9 |
8
|
adantr |
|- ( ( W e. CPreHil /\ x e. V ) -> W e. PreHil ) |
| 10 |
|
simpr |
|- ( ( W e. CPreHil /\ x e. V ) -> x e. V ) |
| 11 |
4 2 1 5
|
ipcl |
|- ( ( W e. PreHil /\ x e. V /\ x e. V ) -> ( x ., x ) e. K ) |
| 12 |
9 10 10 11
|
syl3anc |
|- ( ( W e. CPreHil /\ x e. V ) -> ( x ., x ) e. K ) |
| 13 |
1 2 3
|
nmsq |
|- ( ( W e. CPreHil /\ x e. V ) -> ( ( N ` x ) ^ 2 ) = ( x ., x ) ) |
| 14 |
|
cphngp |
|- ( W e. CPreHil -> W e. NrmGrp ) |
| 15 |
1 3
|
nmcl |
|- ( ( W e. NrmGrp /\ x e. V ) -> ( N ` x ) e. RR ) |
| 16 |
14 15
|
sylan |
|- ( ( W e. CPreHil /\ x e. V ) -> ( N ` x ) e. RR ) |
| 17 |
16
|
resqcld |
|- ( ( W e. CPreHil /\ x e. V ) -> ( ( N ` x ) ^ 2 ) e. RR ) |
| 18 |
13 17
|
eqeltrrd |
|- ( ( W e. CPreHil /\ x e. V ) -> ( x ., x ) e. RR ) |
| 19 |
16
|
sqge0d |
|- ( ( W e. CPreHil /\ x e. V ) -> 0 <_ ( ( N ` x ) ^ 2 ) ) |
| 20 |
19 13
|
breqtrd |
|- ( ( W e. CPreHil /\ x e. V ) -> 0 <_ ( x ., x ) ) |
| 21 |
4 5
|
cphsqrtcl |
|- ( ( W e. CPreHil /\ ( ( x ., x ) e. K /\ ( x ., x ) e. RR /\ 0 <_ ( x ., x ) ) ) -> ( sqrt ` ( x ., x ) ) e. K ) |
| 22 |
7 12 18 20 21
|
syl13anc |
|- ( ( W e. CPreHil /\ x e. V ) -> ( sqrt ` ( x ., x ) ) e. K ) |
| 23 |
6 22
|
fmpt3d |
|- ( W e. CPreHil -> N : V --> K ) |