Step |
Hyp |
Ref |
Expression |
1 |
|
nmsq.v |
|- V = ( Base ` W ) |
2 |
|
nmsq.h |
|- ., = ( .i ` W ) |
3 |
|
nmsq.n |
|- N = ( norm ` W ) |
4 |
|
cphnmcl.f |
|- F = ( Scalar ` W ) |
5 |
|
cphnmcl.k |
|- K = ( Base ` F ) |
6 |
1 2 3
|
cphnmfval |
|- ( W e. CPreHil -> N = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) |
7 |
|
simpl |
|- ( ( W e. CPreHil /\ x e. V ) -> W e. CPreHil ) |
8 |
|
cphphl |
|- ( W e. CPreHil -> W e. PreHil ) |
9 |
8
|
adantr |
|- ( ( W e. CPreHil /\ x e. V ) -> W e. PreHil ) |
10 |
|
simpr |
|- ( ( W e. CPreHil /\ x e. V ) -> x e. V ) |
11 |
4 2 1 5
|
ipcl |
|- ( ( W e. PreHil /\ x e. V /\ x e. V ) -> ( x ., x ) e. K ) |
12 |
9 10 10 11
|
syl3anc |
|- ( ( W e. CPreHil /\ x e. V ) -> ( x ., x ) e. K ) |
13 |
1 2 3
|
nmsq |
|- ( ( W e. CPreHil /\ x e. V ) -> ( ( N ` x ) ^ 2 ) = ( x ., x ) ) |
14 |
|
cphngp |
|- ( W e. CPreHil -> W e. NrmGrp ) |
15 |
1 3
|
nmcl |
|- ( ( W e. NrmGrp /\ x e. V ) -> ( N ` x ) e. RR ) |
16 |
14 15
|
sylan |
|- ( ( W e. CPreHil /\ x e. V ) -> ( N ` x ) e. RR ) |
17 |
16
|
resqcld |
|- ( ( W e. CPreHil /\ x e. V ) -> ( ( N ` x ) ^ 2 ) e. RR ) |
18 |
13 17
|
eqeltrrd |
|- ( ( W e. CPreHil /\ x e. V ) -> ( x ., x ) e. RR ) |
19 |
16
|
sqge0d |
|- ( ( W e. CPreHil /\ x e. V ) -> 0 <_ ( ( N ` x ) ^ 2 ) ) |
20 |
19 13
|
breqtrd |
|- ( ( W e. CPreHil /\ x e. V ) -> 0 <_ ( x ., x ) ) |
21 |
4 5
|
cphsqrtcl |
|- ( ( W e. CPreHil /\ ( ( x ., x ) e. K /\ ( x ., x ) e. RR /\ 0 <_ ( x ., x ) ) ) -> ( sqrt ` ( x ., x ) ) e. K ) |
22 |
7 12 18 20 21
|
syl13anc |
|- ( ( W e. CPreHil /\ x e. V ) -> ( sqrt ` ( x ., x ) ) e. K ) |
23 |
6 22
|
fmpt3d |
|- ( W e. CPreHil -> N : V --> K ) |