Step |
Hyp |
Ref |
Expression |
1 |
|
cphnmvs.v |
|- V = ( Base ` W ) |
2 |
|
cphnmvs.n |
|- N = ( norm ` W ) |
3 |
|
cphnmvs.s |
|- .x. = ( .s ` W ) |
4 |
|
cphnmvs.f |
|- F = ( Scalar ` W ) |
5 |
|
cphnmvs.k |
|- K = ( Base ` F ) |
6 |
|
cphnlm |
|- ( W e. CPreHil -> W e. NrmMod ) |
7 |
|
eqid |
|- ( norm ` F ) = ( norm ` F ) |
8 |
1 2 3 4 5 7
|
nmvs |
|- ( ( W e. NrmMod /\ X e. K /\ Y e. V ) -> ( N ` ( X .x. Y ) ) = ( ( ( norm ` F ) ` X ) x. ( N ` Y ) ) ) |
9 |
6 8
|
syl3an1 |
|- ( ( W e. CPreHil /\ X e. K /\ Y e. V ) -> ( N ` ( X .x. Y ) ) = ( ( ( norm ` F ) ` X ) x. ( N ` Y ) ) ) |
10 |
|
cphclm |
|- ( W e. CPreHil -> W e. CMod ) |
11 |
4 5
|
clmabs |
|- ( ( W e. CMod /\ X e. K ) -> ( abs ` X ) = ( ( norm ` F ) ` X ) ) |
12 |
10 11
|
sylan |
|- ( ( W e. CPreHil /\ X e. K ) -> ( abs ` X ) = ( ( norm ` F ) ` X ) ) |
13 |
12
|
3adant3 |
|- ( ( W e. CPreHil /\ X e. K /\ Y e. V ) -> ( abs ` X ) = ( ( norm ` F ) ` X ) ) |
14 |
13
|
oveq1d |
|- ( ( W e. CPreHil /\ X e. K /\ Y e. V ) -> ( ( abs ` X ) x. ( N ` Y ) ) = ( ( ( norm ` F ) ` X ) x. ( N ` Y ) ) ) |
15 |
9 14
|
eqtr4d |
|- ( ( W e. CPreHil /\ X e. K /\ Y e. V ) -> ( N ` ( X .x. Y ) ) = ( ( abs ` X ) x. ( N ` Y ) ) ) |