Step |
Hyp |
Ref |
Expression |
1 |
|
cphipcj.h |
|- ., = ( .i ` W ) |
2 |
|
cphipcj.v |
|- V = ( Base ` W ) |
3 |
|
cphphl |
|- ( W e. CPreHil -> W e. PreHil ) |
4 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
5 |
|
eqid |
|- ( 0g ` ( Scalar ` W ) ) = ( 0g ` ( Scalar ` W ) ) |
6 |
4 1 2 5
|
iporthcom |
|- ( ( W e. PreHil /\ A e. V /\ B e. V ) -> ( ( A ., B ) = ( 0g ` ( Scalar ` W ) ) <-> ( B ., A ) = ( 0g ` ( Scalar ` W ) ) ) ) |
7 |
3 6
|
syl3an1 |
|- ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> ( ( A ., B ) = ( 0g ` ( Scalar ` W ) ) <-> ( B ., A ) = ( 0g ` ( Scalar ` W ) ) ) ) |
8 |
|
cphclm |
|- ( W e. CPreHil -> W e. CMod ) |
9 |
4
|
clm0 |
|- ( W e. CMod -> 0 = ( 0g ` ( Scalar ` W ) ) ) |
10 |
8 9
|
syl |
|- ( W e. CPreHil -> 0 = ( 0g ` ( Scalar ` W ) ) ) |
11 |
10
|
3ad2ant1 |
|- ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> 0 = ( 0g ` ( Scalar ` W ) ) ) |
12 |
11
|
eqeq2d |
|- ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> ( ( A ., B ) = 0 <-> ( A ., B ) = ( 0g ` ( Scalar ` W ) ) ) ) |
13 |
11
|
eqeq2d |
|- ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> ( ( B ., A ) = 0 <-> ( B ., A ) = ( 0g ` ( Scalar ` W ) ) ) ) |
14 |
7 12 13
|
3bitr4d |
|- ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> ( ( A ., B ) = 0 <-> ( B ., A ) = 0 ) ) |