Metamath Proof Explorer


Theorem cphorthcom

Description: Orthogonality (meaning inner product is 0) is commutative. Complex version of iporthcom . (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses cphipcj.h
|- ., = ( .i ` W )
cphipcj.v
|- V = ( Base ` W )
Assertion cphorthcom
|- ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> ( ( A ., B ) = 0 <-> ( B ., A ) = 0 ) )

Proof

Step Hyp Ref Expression
1 cphipcj.h
 |-  ., = ( .i ` W )
2 cphipcj.v
 |-  V = ( Base ` W )
3 cphphl
 |-  ( W e. CPreHil -> W e. PreHil )
4 eqid
 |-  ( Scalar ` W ) = ( Scalar ` W )
5 eqid
 |-  ( 0g ` ( Scalar ` W ) ) = ( 0g ` ( Scalar ` W ) )
6 4 1 2 5 iporthcom
 |-  ( ( W e. PreHil /\ A e. V /\ B e. V ) -> ( ( A ., B ) = ( 0g ` ( Scalar ` W ) ) <-> ( B ., A ) = ( 0g ` ( Scalar ` W ) ) ) )
7 3 6 syl3an1
 |-  ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> ( ( A ., B ) = ( 0g ` ( Scalar ` W ) ) <-> ( B ., A ) = ( 0g ` ( Scalar ` W ) ) ) )
8 cphclm
 |-  ( W e. CPreHil -> W e. CMod )
9 4 clm0
 |-  ( W e. CMod -> 0 = ( 0g ` ( Scalar ` W ) ) )
10 8 9 syl
 |-  ( W e. CPreHil -> 0 = ( 0g ` ( Scalar ` W ) ) )
11 10 3ad2ant1
 |-  ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> 0 = ( 0g ` ( Scalar ` W ) ) )
12 11 eqeq2d
 |-  ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> ( ( A ., B ) = 0 <-> ( A ., B ) = ( 0g ` ( Scalar ` W ) ) ) )
13 11 eqeq2d
 |-  ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> ( ( B ., A ) = 0 <-> ( B ., A ) = ( 0g ` ( Scalar ` W ) ) ) )
14 7 12 13 3bitr4d
 |-  ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> ( ( A ., B ) = 0 <-> ( B ., A ) = 0 ) )