Step |
Hyp |
Ref |
Expression |
1 |
|
cphpyth.v |
|- V = ( Base ` W ) |
2 |
|
cphpyth.h |
|- ., = ( .i ` W ) |
3 |
|
cphpyth.p |
|- .+ = ( +g ` W ) |
4 |
|
cphpyth.n |
|- N = ( norm ` W ) |
5 |
|
cphpyth.w |
|- ( ph -> W e. CPreHil ) |
6 |
|
cphpyth.a |
|- ( ph -> A e. V ) |
7 |
|
cphpyth.b |
|- ( ph -> B e. V ) |
8 |
2 1 3 5 6 7 6 7
|
cph2di |
|- ( ph -> ( ( A .+ B ) ., ( A .+ B ) ) = ( ( ( A ., A ) + ( B ., B ) ) + ( ( A ., B ) + ( B ., A ) ) ) ) |
9 |
8
|
adantr |
|- ( ( ph /\ ( A ., B ) = 0 ) -> ( ( A .+ B ) ., ( A .+ B ) ) = ( ( ( A ., A ) + ( B ., B ) ) + ( ( A ., B ) + ( B ., A ) ) ) ) |
10 |
|
simpr |
|- ( ( ph /\ ( A ., B ) = 0 ) -> ( A ., B ) = 0 ) |
11 |
2 1
|
cphorthcom |
|- ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> ( ( A ., B ) = 0 <-> ( B ., A ) = 0 ) ) |
12 |
5 6 7 11
|
syl3anc |
|- ( ph -> ( ( A ., B ) = 0 <-> ( B ., A ) = 0 ) ) |
13 |
12
|
biimpa |
|- ( ( ph /\ ( A ., B ) = 0 ) -> ( B ., A ) = 0 ) |
14 |
10 13
|
oveq12d |
|- ( ( ph /\ ( A ., B ) = 0 ) -> ( ( A ., B ) + ( B ., A ) ) = ( 0 + 0 ) ) |
15 |
|
00id |
|- ( 0 + 0 ) = 0 |
16 |
14 15
|
eqtrdi |
|- ( ( ph /\ ( A ., B ) = 0 ) -> ( ( A ., B ) + ( B ., A ) ) = 0 ) |
17 |
16
|
oveq2d |
|- ( ( ph /\ ( A ., B ) = 0 ) -> ( ( ( A ., A ) + ( B ., B ) ) + ( ( A ., B ) + ( B ., A ) ) ) = ( ( ( A ., A ) + ( B ., B ) ) + 0 ) ) |
18 |
1 2
|
cphipcl |
|- ( ( W e. CPreHil /\ A e. V /\ A e. V ) -> ( A ., A ) e. CC ) |
19 |
5 6 6 18
|
syl3anc |
|- ( ph -> ( A ., A ) e. CC ) |
20 |
1 2
|
cphipcl |
|- ( ( W e. CPreHil /\ B e. V /\ B e. V ) -> ( B ., B ) e. CC ) |
21 |
5 7 7 20
|
syl3anc |
|- ( ph -> ( B ., B ) e. CC ) |
22 |
19 21
|
addcld |
|- ( ph -> ( ( A ., A ) + ( B ., B ) ) e. CC ) |
23 |
22
|
addid1d |
|- ( ph -> ( ( ( A ., A ) + ( B ., B ) ) + 0 ) = ( ( A ., A ) + ( B ., B ) ) ) |
24 |
23
|
adantr |
|- ( ( ph /\ ( A ., B ) = 0 ) -> ( ( ( A ., A ) + ( B ., B ) ) + 0 ) = ( ( A ., A ) + ( B ., B ) ) ) |
25 |
9 17 24
|
3eqtrd |
|- ( ( ph /\ ( A ., B ) = 0 ) -> ( ( A .+ B ) ., ( A .+ B ) ) = ( ( A ., A ) + ( B ., B ) ) ) |
26 |
|
cphngp |
|- ( W e. CPreHil -> W e. NrmGrp ) |
27 |
|
ngpgrp |
|- ( W e. NrmGrp -> W e. Grp ) |
28 |
5 26 27
|
3syl |
|- ( ph -> W e. Grp ) |
29 |
1 3 28 6 7
|
grpcld |
|- ( ph -> ( A .+ B ) e. V ) |
30 |
1 2 4
|
nmsq |
|- ( ( W e. CPreHil /\ ( A .+ B ) e. V ) -> ( ( N ` ( A .+ B ) ) ^ 2 ) = ( ( A .+ B ) ., ( A .+ B ) ) ) |
31 |
5 29 30
|
syl2anc |
|- ( ph -> ( ( N ` ( A .+ B ) ) ^ 2 ) = ( ( A .+ B ) ., ( A .+ B ) ) ) |
32 |
31
|
adantr |
|- ( ( ph /\ ( A ., B ) = 0 ) -> ( ( N ` ( A .+ B ) ) ^ 2 ) = ( ( A .+ B ) ., ( A .+ B ) ) ) |
33 |
1 2 4
|
nmsq |
|- ( ( W e. CPreHil /\ A e. V ) -> ( ( N ` A ) ^ 2 ) = ( A ., A ) ) |
34 |
5 6 33
|
syl2anc |
|- ( ph -> ( ( N ` A ) ^ 2 ) = ( A ., A ) ) |
35 |
1 2 4
|
nmsq |
|- ( ( W e. CPreHil /\ B e. V ) -> ( ( N ` B ) ^ 2 ) = ( B ., B ) ) |
36 |
5 7 35
|
syl2anc |
|- ( ph -> ( ( N ` B ) ^ 2 ) = ( B ., B ) ) |
37 |
34 36
|
oveq12d |
|- ( ph -> ( ( ( N ` A ) ^ 2 ) + ( ( N ` B ) ^ 2 ) ) = ( ( A ., A ) + ( B ., B ) ) ) |
38 |
37
|
adantr |
|- ( ( ph /\ ( A ., B ) = 0 ) -> ( ( ( N ` A ) ^ 2 ) + ( ( N ` B ) ^ 2 ) ) = ( ( A ., A ) + ( B ., B ) ) ) |
39 |
25 32 38
|
3eqtr4d |
|- ( ( ph /\ ( A ., B ) = 0 ) -> ( ( N ` ( A .+ B ) ) ^ 2 ) = ( ( ( N ` A ) ^ 2 ) + ( ( N ` B ) ^ 2 ) ) ) |