| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cphpyth.v |  |-  V = ( Base ` W ) | 
						
							| 2 |  | cphpyth.h |  |-  ., = ( .i ` W ) | 
						
							| 3 |  | cphpyth.p |  |-  .+ = ( +g ` W ) | 
						
							| 4 |  | cphpyth.n |  |-  N = ( norm ` W ) | 
						
							| 5 |  | cphpyth.w |  |-  ( ph -> W e. CPreHil ) | 
						
							| 6 |  | cphpyth.a |  |-  ( ph -> A e. V ) | 
						
							| 7 |  | cphpyth.b |  |-  ( ph -> B e. V ) | 
						
							| 8 | 2 1 3 5 6 7 6 7 | cph2di |  |-  ( ph -> ( ( A .+ B ) ., ( A .+ B ) ) = ( ( ( A ., A ) + ( B ., B ) ) + ( ( A ., B ) + ( B ., A ) ) ) ) | 
						
							| 9 | 8 | adantr |  |-  ( ( ph /\ ( A ., B ) = 0 ) -> ( ( A .+ B ) ., ( A .+ B ) ) = ( ( ( A ., A ) + ( B ., B ) ) + ( ( A ., B ) + ( B ., A ) ) ) ) | 
						
							| 10 |  | simpr |  |-  ( ( ph /\ ( A ., B ) = 0 ) -> ( A ., B ) = 0 ) | 
						
							| 11 | 2 1 | cphorthcom |  |-  ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> ( ( A ., B ) = 0 <-> ( B ., A ) = 0 ) ) | 
						
							| 12 | 5 6 7 11 | syl3anc |  |-  ( ph -> ( ( A ., B ) = 0 <-> ( B ., A ) = 0 ) ) | 
						
							| 13 | 12 | biimpa |  |-  ( ( ph /\ ( A ., B ) = 0 ) -> ( B ., A ) = 0 ) | 
						
							| 14 | 10 13 | oveq12d |  |-  ( ( ph /\ ( A ., B ) = 0 ) -> ( ( A ., B ) + ( B ., A ) ) = ( 0 + 0 ) ) | 
						
							| 15 |  | 00id |  |-  ( 0 + 0 ) = 0 | 
						
							| 16 | 14 15 | eqtrdi |  |-  ( ( ph /\ ( A ., B ) = 0 ) -> ( ( A ., B ) + ( B ., A ) ) = 0 ) | 
						
							| 17 | 16 | oveq2d |  |-  ( ( ph /\ ( A ., B ) = 0 ) -> ( ( ( A ., A ) + ( B ., B ) ) + ( ( A ., B ) + ( B ., A ) ) ) = ( ( ( A ., A ) + ( B ., B ) ) + 0 ) ) | 
						
							| 18 | 1 2 | cphipcl |  |-  ( ( W e. CPreHil /\ A e. V /\ A e. V ) -> ( A ., A ) e. CC ) | 
						
							| 19 | 5 6 6 18 | syl3anc |  |-  ( ph -> ( A ., A ) e. CC ) | 
						
							| 20 | 1 2 | cphipcl |  |-  ( ( W e. CPreHil /\ B e. V /\ B e. V ) -> ( B ., B ) e. CC ) | 
						
							| 21 | 5 7 7 20 | syl3anc |  |-  ( ph -> ( B ., B ) e. CC ) | 
						
							| 22 | 19 21 | addcld |  |-  ( ph -> ( ( A ., A ) + ( B ., B ) ) e. CC ) | 
						
							| 23 | 22 | addridd |  |-  ( ph -> ( ( ( A ., A ) + ( B ., B ) ) + 0 ) = ( ( A ., A ) + ( B ., B ) ) ) | 
						
							| 24 | 23 | adantr |  |-  ( ( ph /\ ( A ., B ) = 0 ) -> ( ( ( A ., A ) + ( B ., B ) ) + 0 ) = ( ( A ., A ) + ( B ., B ) ) ) | 
						
							| 25 | 9 17 24 | 3eqtrd |  |-  ( ( ph /\ ( A ., B ) = 0 ) -> ( ( A .+ B ) ., ( A .+ B ) ) = ( ( A ., A ) + ( B ., B ) ) ) | 
						
							| 26 |  | cphngp |  |-  ( W e. CPreHil -> W e. NrmGrp ) | 
						
							| 27 |  | ngpgrp |  |-  ( W e. NrmGrp -> W e. Grp ) | 
						
							| 28 | 5 26 27 | 3syl |  |-  ( ph -> W e. Grp ) | 
						
							| 29 | 1 3 28 6 7 | grpcld |  |-  ( ph -> ( A .+ B ) e. V ) | 
						
							| 30 | 1 2 4 | nmsq |  |-  ( ( W e. CPreHil /\ ( A .+ B ) e. V ) -> ( ( N ` ( A .+ B ) ) ^ 2 ) = ( ( A .+ B ) ., ( A .+ B ) ) ) | 
						
							| 31 | 5 29 30 | syl2anc |  |-  ( ph -> ( ( N ` ( A .+ B ) ) ^ 2 ) = ( ( A .+ B ) ., ( A .+ B ) ) ) | 
						
							| 32 | 31 | adantr |  |-  ( ( ph /\ ( A ., B ) = 0 ) -> ( ( N ` ( A .+ B ) ) ^ 2 ) = ( ( A .+ B ) ., ( A .+ B ) ) ) | 
						
							| 33 | 1 2 4 | nmsq |  |-  ( ( W e. CPreHil /\ A e. V ) -> ( ( N ` A ) ^ 2 ) = ( A ., A ) ) | 
						
							| 34 | 5 6 33 | syl2anc |  |-  ( ph -> ( ( N ` A ) ^ 2 ) = ( A ., A ) ) | 
						
							| 35 | 1 2 4 | nmsq |  |-  ( ( W e. CPreHil /\ B e. V ) -> ( ( N ` B ) ^ 2 ) = ( B ., B ) ) | 
						
							| 36 | 5 7 35 | syl2anc |  |-  ( ph -> ( ( N ` B ) ^ 2 ) = ( B ., B ) ) | 
						
							| 37 | 34 36 | oveq12d |  |-  ( ph -> ( ( ( N ` A ) ^ 2 ) + ( ( N ` B ) ^ 2 ) ) = ( ( A ., A ) + ( B ., B ) ) ) | 
						
							| 38 | 37 | adantr |  |-  ( ( ph /\ ( A ., B ) = 0 ) -> ( ( ( N ` A ) ^ 2 ) + ( ( N ` B ) ^ 2 ) ) = ( ( A ., A ) + ( B ., B ) ) ) | 
						
							| 39 | 25 32 38 | 3eqtr4d |  |-  ( ( ph /\ ( A ., B ) = 0 ) -> ( ( N ` ( A .+ B ) ) ^ 2 ) = ( ( ( N ` A ) ^ 2 ) + ( ( N ` B ) ^ 2 ) ) ) |