Step |
Hyp |
Ref |
Expression |
1 |
|
cphsca.f |
|- F = ( Scalar ` W ) |
2 |
|
cphsca.k |
|- K = ( Base ` F ) |
3 |
1 2
|
cphsubrg |
|- ( W e. CPreHil -> K e. ( SubRing ` CCfld ) ) |
4 |
1 2
|
cphsca |
|- ( W e. CPreHil -> F = ( CCfld |`s K ) ) |
5 |
|
cphlvec |
|- ( W e. CPreHil -> W e. LVec ) |
6 |
1
|
lvecdrng |
|- ( W e. LVec -> F e. DivRing ) |
7 |
5 6
|
syl |
|- ( W e. CPreHil -> F e. DivRing ) |
8 |
4 7
|
eqeltrrd |
|- ( W e. CPreHil -> ( CCfld |`s K ) e. DivRing ) |
9 |
|
qsssubdrg |
|- ( ( K e. ( SubRing ` CCfld ) /\ ( CCfld |`s K ) e. DivRing ) -> QQ C_ K ) |
10 |
3 8 9
|
syl2anc |
|- ( W e. CPreHil -> QQ C_ K ) |