Metamath Proof Explorer


Theorem cphqss

Description: The scalar field of a subcomplex pre-Hilbert space contains the rational numbers. (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Hypotheses cphsca.f
|- F = ( Scalar ` W )
cphsca.k
|- K = ( Base ` F )
Assertion cphqss
|- ( W e. CPreHil -> QQ C_ K )

Proof

Step Hyp Ref Expression
1 cphsca.f
 |-  F = ( Scalar ` W )
2 cphsca.k
 |-  K = ( Base ` F )
3 1 2 cphsubrg
 |-  ( W e. CPreHil -> K e. ( SubRing ` CCfld ) )
4 1 2 cphsca
 |-  ( W e. CPreHil -> F = ( CCfld |`s K ) )
5 cphlvec
 |-  ( W e. CPreHil -> W e. LVec )
6 1 lvecdrng
 |-  ( W e. LVec -> F e. DivRing )
7 5 6 syl
 |-  ( W e. CPreHil -> F e. DivRing )
8 4 7 eqeltrrd
 |-  ( W e. CPreHil -> ( CCfld |`s K ) e. DivRing )
9 qsssubdrg
 |-  ( ( K e. ( SubRing ` CCfld ) /\ ( CCfld |`s K ) e. DivRing ) -> QQ C_ K )
10 3 8 9 syl2anc
 |-  ( W e. CPreHil -> QQ C_ K )