Metamath Proof Explorer


Theorem cphsca

Description: A subcomplex pre-Hilbert space is a vector space over a subfield of CCfld . (Contributed by Mario Carneiro, 8-Oct-2015)

Ref Expression
Hypotheses cphsca.f
|- F = ( Scalar ` W )
cphsca.k
|- K = ( Base ` F )
Assertion cphsca
|- ( W e. CPreHil -> F = ( CCfld |`s K ) )

Proof

Step Hyp Ref Expression
1 cphsca.f
 |-  F = ( Scalar ` W )
2 cphsca.k
 |-  K = ( Base ` F )
3 eqid
 |-  ( Base ` W ) = ( Base ` W )
4 eqid
 |-  ( .i ` W ) = ( .i ` W )
5 eqid
 |-  ( norm ` W ) = ( norm ` W )
6 3 4 5 1 2 iscph
 |-  ( W e. CPreHil <-> ( ( W e. PreHil /\ W e. NrmMod /\ F = ( CCfld |`s K ) ) /\ ( sqrt " ( K i^i ( 0 [,) +oo ) ) ) C_ K /\ ( norm ` W ) = ( x e. ( Base ` W ) |-> ( sqrt ` ( x ( .i ` W ) x ) ) ) ) )
7 6 simp1bi
 |-  ( W e. CPreHil -> ( W e. PreHil /\ W e. NrmMod /\ F = ( CCfld |`s K ) ) )
8 7 simp3d
 |-  ( W e. CPreHil -> F = ( CCfld |`s K ) )