Metamath Proof Explorer


Theorem cphsqrtcl

Description: The scalar field of a subcomplex pre-Hilbert space is closed under square roots of nonnegative reals. (Contributed by Mario Carneiro, 8-Oct-2015)

Ref Expression
Hypotheses cphsca.f
|- F = ( Scalar ` W )
cphsca.k
|- K = ( Base ` F )
Assertion cphsqrtcl
|- ( ( W e. CPreHil /\ ( A e. K /\ A e. RR /\ 0 <_ A ) ) -> ( sqrt ` A ) e. K )

Proof

Step Hyp Ref Expression
1 cphsca.f
 |-  F = ( Scalar ` W )
2 cphsca.k
 |-  K = ( Base ` F )
3 sqrtf
 |-  sqrt : CC --> CC
4 ffn
 |-  ( sqrt : CC --> CC -> sqrt Fn CC )
5 3 4 ax-mp
 |-  sqrt Fn CC
6 inss2
 |-  ( K i^i ( 0 [,) +oo ) ) C_ ( 0 [,) +oo )
7 rge0ssre
 |-  ( 0 [,) +oo ) C_ RR
8 ax-resscn
 |-  RR C_ CC
9 7 8 sstri
 |-  ( 0 [,) +oo ) C_ CC
10 6 9 sstri
 |-  ( K i^i ( 0 [,) +oo ) ) C_ CC
11 simp1
 |-  ( ( A e. K /\ A e. RR /\ 0 <_ A ) -> A e. K )
12 elrege0
 |-  ( A e. ( 0 [,) +oo ) <-> ( A e. RR /\ 0 <_ A ) )
13 12 biimpri
 |-  ( ( A e. RR /\ 0 <_ A ) -> A e. ( 0 [,) +oo ) )
14 13 3adant1
 |-  ( ( A e. K /\ A e. RR /\ 0 <_ A ) -> A e. ( 0 [,) +oo ) )
15 11 14 elind
 |-  ( ( A e. K /\ A e. RR /\ 0 <_ A ) -> A e. ( K i^i ( 0 [,) +oo ) ) )
16 fnfvima
 |-  ( ( sqrt Fn CC /\ ( K i^i ( 0 [,) +oo ) ) C_ CC /\ A e. ( K i^i ( 0 [,) +oo ) ) ) -> ( sqrt ` A ) e. ( sqrt " ( K i^i ( 0 [,) +oo ) ) ) )
17 5 10 15 16 mp3an12i
 |-  ( ( A e. K /\ A e. RR /\ 0 <_ A ) -> ( sqrt ` A ) e. ( sqrt " ( K i^i ( 0 [,) +oo ) ) ) )
18 eqid
 |-  ( Base ` W ) = ( Base ` W )
19 eqid
 |-  ( .i ` W ) = ( .i ` W )
20 eqid
 |-  ( norm ` W ) = ( norm ` W )
21 18 19 20 1 2 iscph
 |-  ( W e. CPreHil <-> ( ( W e. PreHil /\ W e. NrmMod /\ F = ( CCfld |`s K ) ) /\ ( sqrt " ( K i^i ( 0 [,) +oo ) ) ) C_ K /\ ( norm ` W ) = ( x e. ( Base ` W ) |-> ( sqrt ` ( x ( .i ` W ) x ) ) ) ) )
22 21 simp2bi
 |-  ( W e. CPreHil -> ( sqrt " ( K i^i ( 0 [,) +oo ) ) ) C_ K )
23 22 sselda
 |-  ( ( W e. CPreHil /\ ( sqrt ` A ) e. ( sqrt " ( K i^i ( 0 [,) +oo ) ) ) ) -> ( sqrt ` A ) e. K )
24 17 23 sylan2
 |-  ( ( W e. CPreHil /\ ( A e. K /\ A e. RR /\ 0 <_ A ) ) -> ( sqrt ` A ) e. K )