Step |
Hyp |
Ref |
Expression |
1 |
|
cphsca.f |
|- F = ( Scalar ` W ) |
2 |
|
cphsca.k |
|- K = ( Base ` F ) |
3 |
|
sqrt0 |
|- ( sqrt ` 0 ) = 0 |
4 |
|
fveq2 |
|- ( A = 0 -> ( sqrt ` A ) = ( sqrt ` 0 ) ) |
5 |
|
id |
|- ( A = 0 -> A = 0 ) |
6 |
3 4 5
|
3eqtr4a |
|- ( A = 0 -> ( sqrt ` A ) = A ) |
7 |
6
|
adantl |
|- ( ( ( W e. CPreHil /\ A e. K /\ -. -u A e. RR+ ) /\ A = 0 ) -> ( sqrt ` A ) = A ) |
8 |
|
simpl2 |
|- ( ( ( W e. CPreHil /\ A e. K /\ -. -u A e. RR+ ) /\ A = 0 ) -> A e. K ) |
9 |
7 8
|
eqeltrd |
|- ( ( ( W e. CPreHil /\ A e. K /\ -. -u A e. RR+ ) /\ A = 0 ) -> ( sqrt ` A ) e. K ) |
10 |
|
simpl1 |
|- ( ( ( W e. CPreHil /\ A e. K /\ -. -u A e. RR+ ) /\ A =/= 0 ) -> W e. CPreHil ) |
11 |
1 2
|
cphsubrg |
|- ( W e. CPreHil -> K e. ( SubRing ` CCfld ) ) |
12 |
10 11
|
syl |
|- ( ( ( W e. CPreHil /\ A e. K /\ -. -u A e. RR+ ) /\ A =/= 0 ) -> K e. ( SubRing ` CCfld ) ) |
13 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
14 |
13
|
subrgss |
|- ( K e. ( SubRing ` CCfld ) -> K C_ CC ) |
15 |
12 14
|
syl |
|- ( ( ( W e. CPreHil /\ A e. K /\ -. -u A e. RR+ ) /\ A =/= 0 ) -> K C_ CC ) |
16 |
|
simpl2 |
|- ( ( ( W e. CPreHil /\ A e. K /\ -. -u A e. RR+ ) /\ A =/= 0 ) -> A e. K ) |
17 |
1 2
|
cphabscl |
|- ( ( W e. CPreHil /\ A e. K ) -> ( abs ` A ) e. K ) |
18 |
10 16 17
|
syl2anc |
|- ( ( ( W e. CPreHil /\ A e. K /\ -. -u A e. RR+ ) /\ A =/= 0 ) -> ( abs ` A ) e. K ) |
19 |
15 16
|
sseldd |
|- ( ( ( W e. CPreHil /\ A e. K /\ -. -u A e. RR+ ) /\ A =/= 0 ) -> A e. CC ) |
20 |
19
|
abscld |
|- ( ( ( W e. CPreHil /\ A e. K /\ -. -u A e. RR+ ) /\ A =/= 0 ) -> ( abs ` A ) e. RR ) |
21 |
19
|
absge0d |
|- ( ( ( W e. CPreHil /\ A e. K /\ -. -u A e. RR+ ) /\ A =/= 0 ) -> 0 <_ ( abs ` A ) ) |
22 |
1 2
|
cphsqrtcl |
|- ( ( W e. CPreHil /\ ( ( abs ` A ) e. K /\ ( abs ` A ) e. RR /\ 0 <_ ( abs ` A ) ) ) -> ( sqrt ` ( abs ` A ) ) e. K ) |
23 |
10 18 20 21 22
|
syl13anc |
|- ( ( ( W e. CPreHil /\ A e. K /\ -. -u A e. RR+ ) /\ A =/= 0 ) -> ( sqrt ` ( abs ` A ) ) e. K ) |
24 |
|
cnfldadd |
|- + = ( +g ` CCfld ) |
25 |
24
|
subrgacl |
|- ( ( K e. ( SubRing ` CCfld ) /\ ( abs ` A ) e. K /\ A e. K ) -> ( ( abs ` A ) + A ) e. K ) |
26 |
12 18 16 25
|
syl3anc |
|- ( ( ( W e. CPreHil /\ A e. K /\ -. -u A e. RR+ ) /\ A =/= 0 ) -> ( ( abs ` A ) + A ) e. K ) |
27 |
1 2
|
cphabscl |
|- ( ( W e. CPreHil /\ ( ( abs ` A ) + A ) e. K ) -> ( abs ` ( ( abs ` A ) + A ) ) e. K ) |
28 |
10 26 27
|
syl2anc |
|- ( ( ( W e. CPreHil /\ A e. K /\ -. -u A e. RR+ ) /\ A =/= 0 ) -> ( abs ` ( ( abs ` A ) + A ) ) e. K ) |
29 |
15 26
|
sseldd |
|- ( ( ( W e. CPreHil /\ A e. K /\ -. -u A e. RR+ ) /\ A =/= 0 ) -> ( ( abs ` A ) + A ) e. CC ) |
30 |
|
simpl3 |
|- ( ( ( W e. CPreHil /\ A e. K /\ -. -u A e. RR+ ) /\ A =/= 0 ) -> -. -u A e. RR+ ) |
31 |
20
|
recnd |
|- ( ( ( W e. CPreHil /\ A e. K /\ -. -u A e. RR+ ) /\ A =/= 0 ) -> ( abs ` A ) e. CC ) |
32 |
31 19
|
subnegd |
|- ( ( ( W e. CPreHil /\ A e. K /\ -. -u A e. RR+ ) /\ A =/= 0 ) -> ( ( abs ` A ) - -u A ) = ( ( abs ` A ) + A ) ) |
33 |
32
|
eqeq1d |
|- ( ( ( W e. CPreHil /\ A e. K /\ -. -u A e. RR+ ) /\ A =/= 0 ) -> ( ( ( abs ` A ) - -u A ) = 0 <-> ( ( abs ` A ) + A ) = 0 ) ) |
34 |
19
|
negcld |
|- ( ( ( W e. CPreHil /\ A e. K /\ -. -u A e. RR+ ) /\ A =/= 0 ) -> -u A e. CC ) |
35 |
31 34
|
subeq0ad |
|- ( ( ( W e. CPreHil /\ A e. K /\ -. -u A e. RR+ ) /\ A =/= 0 ) -> ( ( ( abs ` A ) - -u A ) = 0 <-> ( abs ` A ) = -u A ) ) |
36 |
33 35
|
bitr3d |
|- ( ( ( W e. CPreHil /\ A e. K /\ -. -u A e. RR+ ) /\ A =/= 0 ) -> ( ( ( abs ` A ) + A ) = 0 <-> ( abs ` A ) = -u A ) ) |
37 |
|
absrpcl |
|- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` A ) e. RR+ ) |
38 |
19 37
|
sylancom |
|- ( ( ( W e. CPreHil /\ A e. K /\ -. -u A e. RR+ ) /\ A =/= 0 ) -> ( abs ` A ) e. RR+ ) |
39 |
|
eleq1 |
|- ( ( abs ` A ) = -u A -> ( ( abs ` A ) e. RR+ <-> -u A e. RR+ ) ) |
40 |
38 39
|
syl5ibcom |
|- ( ( ( W e. CPreHil /\ A e. K /\ -. -u A e. RR+ ) /\ A =/= 0 ) -> ( ( abs ` A ) = -u A -> -u A e. RR+ ) ) |
41 |
36 40
|
sylbid |
|- ( ( ( W e. CPreHil /\ A e. K /\ -. -u A e. RR+ ) /\ A =/= 0 ) -> ( ( ( abs ` A ) + A ) = 0 -> -u A e. RR+ ) ) |
42 |
41
|
necon3bd |
|- ( ( ( W e. CPreHil /\ A e. K /\ -. -u A e. RR+ ) /\ A =/= 0 ) -> ( -. -u A e. RR+ -> ( ( abs ` A ) + A ) =/= 0 ) ) |
43 |
30 42
|
mpd |
|- ( ( ( W e. CPreHil /\ A e. K /\ -. -u A e. RR+ ) /\ A =/= 0 ) -> ( ( abs ` A ) + A ) =/= 0 ) |
44 |
29 43
|
absne0d |
|- ( ( ( W e. CPreHil /\ A e. K /\ -. -u A e. RR+ ) /\ A =/= 0 ) -> ( abs ` ( ( abs ` A ) + A ) ) =/= 0 ) |
45 |
1 2
|
cphdivcl |
|- ( ( W e. CPreHil /\ ( ( ( abs ` A ) + A ) e. K /\ ( abs ` ( ( abs ` A ) + A ) ) e. K /\ ( abs ` ( ( abs ` A ) + A ) ) =/= 0 ) ) -> ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) e. K ) |
46 |
10 26 28 44 45
|
syl13anc |
|- ( ( ( W e. CPreHil /\ A e. K /\ -. -u A e. RR+ ) /\ A =/= 0 ) -> ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) e. K ) |
47 |
|
cnfldmul |
|- x. = ( .r ` CCfld ) |
48 |
47
|
subrgmcl |
|- ( ( K e. ( SubRing ` CCfld ) /\ ( sqrt ` ( abs ` A ) ) e. K /\ ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) e. K ) -> ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) e. K ) |
49 |
12 23 46 48
|
syl3anc |
|- ( ( ( W e. CPreHil /\ A e. K /\ -. -u A e. RR+ ) /\ A =/= 0 ) -> ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) e. K ) |
50 |
15 49
|
sseldd |
|- ( ( ( W e. CPreHil /\ A e. K /\ -. -u A e. RR+ ) /\ A =/= 0 ) -> ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) e. CC ) |
51 |
|
eqid |
|- ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) = ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) |
52 |
51
|
sqreulem |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ^ 2 ) = A /\ 0 <_ ( Re ` ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) /\ ( _i x. ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) e/ RR+ ) ) |
53 |
19 43 52
|
syl2anc |
|- ( ( ( W e. CPreHil /\ A e. K /\ -. -u A e. RR+ ) /\ A =/= 0 ) -> ( ( ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ^ 2 ) = A /\ 0 <_ ( Re ` ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) /\ ( _i x. ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) e/ RR+ ) ) |
54 |
53
|
simp1d |
|- ( ( ( W e. CPreHil /\ A e. K /\ -. -u A e. RR+ ) /\ A =/= 0 ) -> ( ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ^ 2 ) = A ) |
55 |
53
|
simp2d |
|- ( ( ( W e. CPreHil /\ A e. K /\ -. -u A e. RR+ ) /\ A =/= 0 ) -> 0 <_ ( Re ` ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) ) |
56 |
53
|
simp3d |
|- ( ( ( W e. CPreHil /\ A e. K /\ -. -u A e. RR+ ) /\ A =/= 0 ) -> ( _i x. ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) e/ RR+ ) |
57 |
|
df-nel |
|- ( ( _i x. ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) e/ RR+ <-> -. ( _i x. ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) e. RR+ ) |
58 |
56 57
|
sylib |
|- ( ( ( W e. CPreHil /\ A e. K /\ -. -u A e. RR+ ) /\ A =/= 0 ) -> -. ( _i x. ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) e. RR+ ) |
59 |
50 19 54 55 58
|
eqsqrtd |
|- ( ( ( W e. CPreHil /\ A e. K /\ -. -u A e. RR+ ) /\ A =/= 0 ) -> ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) = ( sqrt ` A ) ) |
60 |
59 49
|
eqeltrrd |
|- ( ( ( W e. CPreHil /\ A e. K /\ -. -u A e. RR+ ) /\ A =/= 0 ) -> ( sqrt ` A ) e. K ) |
61 |
9 60
|
pm2.61dane |
|- ( ( W e. CPreHil /\ A e. K /\ -. -u A e. RR+ ) -> ( sqrt ` A ) e. K ) |