Step |
Hyp |
Ref |
Expression |
1 |
|
cphsca.f |
|- F = ( Scalar ` W ) |
2 |
|
cphsca.k |
|- K = ( Base ` F ) |
3 |
|
simpl1 |
|- ( ( ( W e. CPreHil /\ _i e. K /\ A e. K ) /\ -u A e. RR+ ) -> W e. CPreHil ) |
4 |
1 2
|
cphsubrg |
|- ( W e. CPreHil -> K e. ( SubRing ` CCfld ) ) |
5 |
3 4
|
syl |
|- ( ( ( W e. CPreHil /\ _i e. K /\ A e. K ) /\ -u A e. RR+ ) -> K e. ( SubRing ` CCfld ) ) |
6 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
7 |
6
|
subrgss |
|- ( K e. ( SubRing ` CCfld ) -> K C_ CC ) |
8 |
5 7
|
syl |
|- ( ( ( W e. CPreHil /\ _i e. K /\ A e. K ) /\ -u A e. RR+ ) -> K C_ CC ) |
9 |
|
simpl3 |
|- ( ( ( W e. CPreHil /\ _i e. K /\ A e. K ) /\ -u A e. RR+ ) -> A e. K ) |
10 |
8 9
|
sseldd |
|- ( ( ( W e. CPreHil /\ _i e. K /\ A e. K ) /\ -u A e. RR+ ) -> A e. CC ) |
11 |
10
|
negnegd |
|- ( ( ( W e. CPreHil /\ _i e. K /\ A e. K ) /\ -u A e. RR+ ) -> -u -u A = A ) |
12 |
11
|
fveq2d |
|- ( ( ( W e. CPreHil /\ _i e. K /\ A e. K ) /\ -u A e. RR+ ) -> ( sqrt ` -u -u A ) = ( sqrt ` A ) ) |
13 |
|
rpre |
|- ( -u A e. RR+ -> -u A e. RR ) |
14 |
13
|
adantl |
|- ( ( ( W e. CPreHil /\ _i e. K /\ A e. K ) /\ -u A e. RR+ ) -> -u A e. RR ) |
15 |
|
rpge0 |
|- ( -u A e. RR+ -> 0 <_ -u A ) |
16 |
15
|
adantl |
|- ( ( ( W e. CPreHil /\ _i e. K /\ A e. K ) /\ -u A e. RR+ ) -> 0 <_ -u A ) |
17 |
14 16
|
sqrtnegd |
|- ( ( ( W e. CPreHil /\ _i e. K /\ A e. K ) /\ -u A e. RR+ ) -> ( sqrt ` -u -u A ) = ( _i x. ( sqrt ` -u A ) ) ) |
18 |
12 17
|
eqtr3d |
|- ( ( ( W e. CPreHil /\ _i e. K /\ A e. K ) /\ -u A e. RR+ ) -> ( sqrt ` A ) = ( _i x. ( sqrt ` -u A ) ) ) |
19 |
|
simpl2 |
|- ( ( ( W e. CPreHil /\ _i e. K /\ A e. K ) /\ -u A e. RR+ ) -> _i e. K ) |
20 |
|
cnfldneg |
|- ( A e. CC -> ( ( invg ` CCfld ) ` A ) = -u A ) |
21 |
10 20
|
syl |
|- ( ( ( W e. CPreHil /\ _i e. K /\ A e. K ) /\ -u A e. RR+ ) -> ( ( invg ` CCfld ) ` A ) = -u A ) |
22 |
|
subrgsubg |
|- ( K e. ( SubRing ` CCfld ) -> K e. ( SubGrp ` CCfld ) ) |
23 |
5 22
|
syl |
|- ( ( ( W e. CPreHil /\ _i e. K /\ A e. K ) /\ -u A e. RR+ ) -> K e. ( SubGrp ` CCfld ) ) |
24 |
|
eqid |
|- ( invg ` CCfld ) = ( invg ` CCfld ) |
25 |
24
|
subginvcl |
|- ( ( K e. ( SubGrp ` CCfld ) /\ A e. K ) -> ( ( invg ` CCfld ) ` A ) e. K ) |
26 |
23 9 25
|
syl2anc |
|- ( ( ( W e. CPreHil /\ _i e. K /\ A e. K ) /\ -u A e. RR+ ) -> ( ( invg ` CCfld ) ` A ) e. K ) |
27 |
21 26
|
eqeltrrd |
|- ( ( ( W e. CPreHil /\ _i e. K /\ A e. K ) /\ -u A e. RR+ ) -> -u A e. K ) |
28 |
1 2
|
cphsqrtcl |
|- ( ( W e. CPreHil /\ ( -u A e. K /\ -u A e. RR /\ 0 <_ -u A ) ) -> ( sqrt ` -u A ) e. K ) |
29 |
3 27 14 16 28
|
syl13anc |
|- ( ( ( W e. CPreHil /\ _i e. K /\ A e. K ) /\ -u A e. RR+ ) -> ( sqrt ` -u A ) e. K ) |
30 |
|
cnfldmul |
|- x. = ( .r ` CCfld ) |
31 |
30
|
subrgmcl |
|- ( ( K e. ( SubRing ` CCfld ) /\ _i e. K /\ ( sqrt ` -u A ) e. K ) -> ( _i x. ( sqrt ` -u A ) ) e. K ) |
32 |
5 19 29 31
|
syl3anc |
|- ( ( ( W e. CPreHil /\ _i e. K /\ A e. K ) /\ -u A e. RR+ ) -> ( _i x. ( sqrt ` -u A ) ) e. K ) |
33 |
18 32
|
eqeltrd |
|- ( ( ( W e. CPreHil /\ _i e. K /\ A e. K ) /\ -u A e. RR+ ) -> ( sqrt ` A ) e. K ) |
34 |
33
|
ex |
|- ( ( W e. CPreHil /\ _i e. K /\ A e. K ) -> ( -u A e. RR+ -> ( sqrt ` A ) e. K ) ) |
35 |
1 2
|
cphsqrtcl2 |
|- ( ( W e. CPreHil /\ A e. K /\ -. -u A e. RR+ ) -> ( sqrt ` A ) e. K ) |
36 |
35
|
3expia |
|- ( ( W e. CPreHil /\ A e. K ) -> ( -. -u A e. RR+ -> ( sqrt ` A ) e. K ) ) |
37 |
36
|
3adant2 |
|- ( ( W e. CPreHil /\ _i e. K /\ A e. K ) -> ( -. -u A e. RR+ -> ( sqrt ` A ) e. K ) ) |
38 |
34 37
|
pm2.61d |
|- ( ( W e. CPreHil /\ _i e. K /\ A e. K ) -> ( sqrt ` A ) e. K ) |