Step |
Hyp |
Ref |
Expression |
1 |
|
cphsscph.x |
|- X = ( W |`s U ) |
2 |
|
cphsscph.s |
|- S = ( LSubSp ` W ) |
3 |
|
cphphl |
|- ( W e. CPreHil -> W e. PreHil ) |
4 |
1 2
|
phlssphl |
|- ( ( W e. PreHil /\ U e. S ) -> X e. PreHil ) |
5 |
3 4
|
sylan |
|- ( ( W e. CPreHil /\ U e. S ) -> X e. PreHil ) |
6 |
|
cphnlm |
|- ( W e. CPreHil -> W e. NrmMod ) |
7 |
1 2
|
lssnlm |
|- ( ( W e. NrmMod /\ U e. S ) -> X e. NrmMod ) |
8 |
6 7
|
sylan |
|- ( ( W e. CPreHil /\ U e. S ) -> X e. NrmMod ) |
9 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
10 |
|
eqid |
|- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
11 |
9 10
|
cphsca |
|- ( W e. CPreHil -> ( Scalar ` W ) = ( CCfld |`s ( Base ` ( Scalar ` W ) ) ) ) |
12 |
11
|
adantr |
|- ( ( W e. CPreHil /\ U e. S ) -> ( Scalar ` W ) = ( CCfld |`s ( Base ` ( Scalar ` W ) ) ) ) |
13 |
1 9
|
resssca |
|- ( U e. S -> ( Scalar ` W ) = ( Scalar ` X ) ) |
14 |
13
|
fveq2d |
|- ( U e. S -> ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` X ) ) ) |
15 |
14
|
oveq2d |
|- ( U e. S -> ( CCfld |`s ( Base ` ( Scalar ` W ) ) ) = ( CCfld |`s ( Base ` ( Scalar ` X ) ) ) ) |
16 |
13 15
|
eqeq12d |
|- ( U e. S -> ( ( Scalar ` W ) = ( CCfld |`s ( Base ` ( Scalar ` W ) ) ) <-> ( Scalar ` X ) = ( CCfld |`s ( Base ` ( Scalar ` X ) ) ) ) ) |
17 |
16
|
adantl |
|- ( ( W e. CPreHil /\ U e. S ) -> ( ( Scalar ` W ) = ( CCfld |`s ( Base ` ( Scalar ` W ) ) ) <-> ( Scalar ` X ) = ( CCfld |`s ( Base ` ( Scalar ` X ) ) ) ) ) |
18 |
12 17
|
mpbid |
|- ( ( W e. CPreHil /\ U e. S ) -> ( Scalar ` X ) = ( CCfld |`s ( Base ` ( Scalar ` X ) ) ) ) |
19 |
5 8 18
|
3jca |
|- ( ( W e. CPreHil /\ U e. S ) -> ( X e. PreHil /\ X e. NrmMod /\ ( Scalar ` X ) = ( CCfld |`s ( Base ` ( Scalar ` X ) ) ) ) ) |
20 |
|
simpl |
|- ( ( W e. CPreHil /\ U e. S ) -> W e. CPreHil ) |
21 |
|
elinel1 |
|- ( q e. ( ( Base ` ( Scalar ` W ) ) i^i ( 0 [,) +oo ) ) -> q e. ( Base ` ( Scalar ` W ) ) ) |
22 |
21
|
adantr |
|- ( ( q e. ( ( Base ` ( Scalar ` W ) ) i^i ( 0 [,) +oo ) ) /\ ( sqrt ` q ) = x ) -> q e. ( Base ` ( Scalar ` W ) ) ) |
23 |
|
elinel2 |
|- ( q e. ( ( Base ` ( Scalar ` W ) ) i^i ( 0 [,) +oo ) ) -> q e. ( 0 [,) +oo ) ) |
24 |
|
elrege0 |
|- ( q e. ( 0 [,) +oo ) <-> ( q e. RR /\ 0 <_ q ) ) |
25 |
24
|
simplbi |
|- ( q e. ( 0 [,) +oo ) -> q e. RR ) |
26 |
23 25
|
syl |
|- ( q e. ( ( Base ` ( Scalar ` W ) ) i^i ( 0 [,) +oo ) ) -> q e. RR ) |
27 |
26
|
adantr |
|- ( ( q e. ( ( Base ` ( Scalar ` W ) ) i^i ( 0 [,) +oo ) ) /\ ( sqrt ` q ) = x ) -> q e. RR ) |
28 |
24
|
simprbi |
|- ( q e. ( 0 [,) +oo ) -> 0 <_ q ) |
29 |
23 28
|
syl |
|- ( q e. ( ( Base ` ( Scalar ` W ) ) i^i ( 0 [,) +oo ) ) -> 0 <_ q ) |
30 |
29
|
adantr |
|- ( ( q e. ( ( Base ` ( Scalar ` W ) ) i^i ( 0 [,) +oo ) ) /\ ( sqrt ` q ) = x ) -> 0 <_ q ) |
31 |
22 27 30
|
3jca |
|- ( ( q e. ( ( Base ` ( Scalar ` W ) ) i^i ( 0 [,) +oo ) ) /\ ( sqrt ` q ) = x ) -> ( q e. ( Base ` ( Scalar ` W ) ) /\ q e. RR /\ 0 <_ q ) ) |
32 |
9 10
|
cphsqrtcl |
|- ( ( W e. CPreHil /\ ( q e. ( Base ` ( Scalar ` W ) ) /\ q e. RR /\ 0 <_ q ) ) -> ( sqrt ` q ) e. ( Base ` ( Scalar ` W ) ) ) |
33 |
20 31 32
|
syl2anr |
|- ( ( ( q e. ( ( Base ` ( Scalar ` W ) ) i^i ( 0 [,) +oo ) ) /\ ( sqrt ` q ) = x ) /\ ( W e. CPreHil /\ U e. S ) ) -> ( sqrt ` q ) e. ( Base ` ( Scalar ` W ) ) ) |
34 |
|
eleq1 |
|- ( ( sqrt ` q ) = x -> ( ( sqrt ` q ) e. ( Base ` ( Scalar ` W ) ) <-> x e. ( Base ` ( Scalar ` W ) ) ) ) |
35 |
34
|
adantl |
|- ( ( q e. ( ( Base ` ( Scalar ` W ) ) i^i ( 0 [,) +oo ) ) /\ ( sqrt ` q ) = x ) -> ( ( sqrt ` q ) e. ( Base ` ( Scalar ` W ) ) <-> x e. ( Base ` ( Scalar ` W ) ) ) ) |
36 |
35
|
adantr |
|- ( ( ( q e. ( ( Base ` ( Scalar ` W ) ) i^i ( 0 [,) +oo ) ) /\ ( sqrt ` q ) = x ) /\ ( W e. CPreHil /\ U e. S ) ) -> ( ( sqrt ` q ) e. ( Base ` ( Scalar ` W ) ) <-> x e. ( Base ` ( Scalar ` W ) ) ) ) |
37 |
33 36
|
mpbid |
|- ( ( ( q e. ( ( Base ` ( Scalar ` W ) ) i^i ( 0 [,) +oo ) ) /\ ( sqrt ` q ) = x ) /\ ( W e. CPreHil /\ U e. S ) ) -> x e. ( Base ` ( Scalar ` W ) ) ) |
38 |
37
|
ex |
|- ( ( q e. ( ( Base ` ( Scalar ` W ) ) i^i ( 0 [,) +oo ) ) /\ ( sqrt ` q ) = x ) -> ( ( W e. CPreHil /\ U e. S ) -> x e. ( Base ` ( Scalar ` W ) ) ) ) |
39 |
38
|
rexlimiva |
|- ( E. q e. ( ( Base ` ( Scalar ` W ) ) i^i ( 0 [,) +oo ) ) ( sqrt ` q ) = x -> ( ( W e. CPreHil /\ U e. S ) -> x e. ( Base ` ( Scalar ` W ) ) ) ) |
40 |
|
df-sqrt |
|- sqrt = ( x e. CC |-> ( iota_ c e. CC ( ( c ^ 2 ) = x /\ 0 <_ ( Re ` c ) /\ ( _i x. c ) e/ RR+ ) ) ) |
41 |
40
|
funmpt2 |
|- Fun sqrt |
42 |
|
fvelima |
|- ( ( Fun sqrt /\ x e. ( sqrt " ( ( Base ` ( Scalar ` W ) ) i^i ( 0 [,) +oo ) ) ) ) -> E. q e. ( ( Base ` ( Scalar ` W ) ) i^i ( 0 [,) +oo ) ) ( sqrt ` q ) = x ) |
43 |
41 42
|
mpan |
|- ( x e. ( sqrt " ( ( Base ` ( Scalar ` W ) ) i^i ( 0 [,) +oo ) ) ) -> E. q e. ( ( Base ` ( Scalar ` W ) ) i^i ( 0 [,) +oo ) ) ( sqrt ` q ) = x ) |
44 |
39 43
|
syl11 |
|- ( ( W e. CPreHil /\ U e. S ) -> ( x e. ( sqrt " ( ( Base ` ( Scalar ` W ) ) i^i ( 0 [,) +oo ) ) ) -> x e. ( Base ` ( Scalar ` W ) ) ) ) |
45 |
44
|
ssrdv |
|- ( ( W e. CPreHil /\ U e. S ) -> ( sqrt " ( ( Base ` ( Scalar ` W ) ) i^i ( 0 [,) +oo ) ) ) C_ ( Base ` ( Scalar ` W ) ) ) |
46 |
14
|
ineq1d |
|- ( U e. S -> ( ( Base ` ( Scalar ` W ) ) i^i ( 0 [,) +oo ) ) = ( ( Base ` ( Scalar ` X ) ) i^i ( 0 [,) +oo ) ) ) |
47 |
46
|
imaeq2d |
|- ( U e. S -> ( sqrt " ( ( Base ` ( Scalar ` W ) ) i^i ( 0 [,) +oo ) ) ) = ( sqrt " ( ( Base ` ( Scalar ` X ) ) i^i ( 0 [,) +oo ) ) ) ) |
48 |
47 14
|
sseq12d |
|- ( U e. S -> ( ( sqrt " ( ( Base ` ( Scalar ` W ) ) i^i ( 0 [,) +oo ) ) ) C_ ( Base ` ( Scalar ` W ) ) <-> ( sqrt " ( ( Base ` ( Scalar ` X ) ) i^i ( 0 [,) +oo ) ) ) C_ ( Base ` ( Scalar ` X ) ) ) ) |
49 |
48
|
adantl |
|- ( ( W e. CPreHil /\ U e. S ) -> ( ( sqrt " ( ( Base ` ( Scalar ` W ) ) i^i ( 0 [,) +oo ) ) ) C_ ( Base ` ( Scalar ` W ) ) <-> ( sqrt " ( ( Base ` ( Scalar ` X ) ) i^i ( 0 [,) +oo ) ) ) C_ ( Base ` ( Scalar ` X ) ) ) ) |
50 |
45 49
|
mpbid |
|- ( ( W e. CPreHil /\ U e. S ) -> ( sqrt " ( ( Base ` ( Scalar ` X ) ) i^i ( 0 [,) +oo ) ) ) C_ ( Base ` ( Scalar ` X ) ) ) |
51 |
|
cphlmod |
|- ( W e. CPreHil -> W e. LMod ) |
52 |
2
|
lsssubg |
|- ( ( W e. LMod /\ U e. S ) -> U e. ( SubGrp ` W ) ) |
53 |
51 52
|
sylan |
|- ( ( W e. CPreHil /\ U e. S ) -> U e. ( SubGrp ` W ) ) |
54 |
|
eqid |
|- ( norm ` W ) = ( norm ` W ) |
55 |
|
eqid |
|- ( norm ` X ) = ( norm ` X ) |
56 |
1 54 55
|
subgnm |
|- ( U e. ( SubGrp ` W ) -> ( norm ` X ) = ( ( norm ` W ) |` U ) ) |
57 |
53 56
|
syl |
|- ( ( W e. CPreHil /\ U e. S ) -> ( norm ` X ) = ( ( norm ` W ) |` U ) ) |
58 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
59 |
|
eqid |
|- ( .i ` W ) = ( .i ` W ) |
60 |
58 59 54
|
cphnmfval |
|- ( W e. CPreHil -> ( norm ` W ) = ( b e. ( Base ` W ) |-> ( sqrt ` ( b ( .i ` W ) b ) ) ) ) |
61 |
60
|
adantr |
|- ( ( W e. CPreHil /\ U e. S ) -> ( norm ` W ) = ( b e. ( Base ` W ) |-> ( sqrt ` ( b ( .i ` W ) b ) ) ) ) |
62 |
1 59
|
ressip |
|- ( U e. S -> ( .i ` W ) = ( .i ` X ) ) |
63 |
62
|
adantl |
|- ( ( W e. CPreHil /\ U e. S ) -> ( .i ` W ) = ( .i ` X ) ) |
64 |
63
|
oveqd |
|- ( ( W e. CPreHil /\ U e. S ) -> ( b ( .i ` W ) b ) = ( b ( .i ` X ) b ) ) |
65 |
64
|
fveq2d |
|- ( ( W e. CPreHil /\ U e. S ) -> ( sqrt ` ( b ( .i ` W ) b ) ) = ( sqrt ` ( b ( .i ` X ) b ) ) ) |
66 |
65
|
mpteq2dv |
|- ( ( W e. CPreHil /\ U e. S ) -> ( b e. ( Base ` W ) |-> ( sqrt ` ( b ( .i ` W ) b ) ) ) = ( b e. ( Base ` W ) |-> ( sqrt ` ( b ( .i ` X ) b ) ) ) ) |
67 |
61 66
|
eqtrd |
|- ( ( W e. CPreHil /\ U e. S ) -> ( norm ` W ) = ( b e. ( Base ` W ) |-> ( sqrt ` ( b ( .i ` X ) b ) ) ) ) |
68 |
58 2
|
lssss |
|- ( U e. S -> U C_ ( Base ` W ) ) |
69 |
68
|
adantl |
|- ( ( W e. CPreHil /\ U e. S ) -> U C_ ( Base ` W ) ) |
70 |
|
dfss |
|- ( U C_ ( Base ` W ) <-> U = ( U i^i ( Base ` W ) ) ) |
71 |
69 70
|
sylib |
|- ( ( W e. CPreHil /\ U e. S ) -> U = ( U i^i ( Base ` W ) ) ) |
72 |
67 71
|
reseq12d |
|- ( ( W e. CPreHil /\ U e. S ) -> ( ( norm ` W ) |` U ) = ( ( b e. ( Base ` W ) |-> ( sqrt ` ( b ( .i ` X ) b ) ) ) |` ( U i^i ( Base ` W ) ) ) ) |
73 |
1 58
|
ressbas |
|- ( U e. S -> ( U i^i ( Base ` W ) ) = ( Base ` X ) ) |
74 |
73
|
adantl |
|- ( ( W e. CPreHil /\ U e. S ) -> ( U i^i ( Base ` W ) ) = ( Base ` X ) ) |
75 |
74
|
reseq2d |
|- ( ( W e. CPreHil /\ U e. S ) -> ( ( b e. ( Base ` W ) |-> ( sqrt ` ( b ( .i ` X ) b ) ) ) |` ( U i^i ( Base ` W ) ) ) = ( ( b e. ( Base ` W ) |-> ( sqrt ` ( b ( .i ` X ) b ) ) ) |` ( Base ` X ) ) ) |
76 |
72 75
|
eqtrd |
|- ( ( W e. CPreHil /\ U e. S ) -> ( ( norm ` W ) |` U ) = ( ( b e. ( Base ` W ) |-> ( sqrt ` ( b ( .i ` X ) b ) ) ) |` ( Base ` X ) ) ) |
77 |
1 58
|
ressbasss |
|- ( Base ` X ) C_ ( Base ` W ) |
78 |
77
|
a1i |
|- ( ( W e. CPreHil /\ U e. S ) -> ( Base ` X ) C_ ( Base ` W ) ) |
79 |
78
|
resmptd |
|- ( ( W e. CPreHil /\ U e. S ) -> ( ( b e. ( Base ` W ) |-> ( sqrt ` ( b ( .i ` X ) b ) ) ) |` ( Base ` X ) ) = ( b e. ( Base ` X ) |-> ( sqrt ` ( b ( .i ` X ) b ) ) ) ) |
80 |
57 76 79
|
3eqtrd |
|- ( ( W e. CPreHil /\ U e. S ) -> ( norm ` X ) = ( b e. ( Base ` X ) |-> ( sqrt ` ( b ( .i ` X ) b ) ) ) ) |
81 |
|
eqid |
|- ( Base ` X ) = ( Base ` X ) |
82 |
|
eqid |
|- ( .i ` X ) = ( .i ` X ) |
83 |
|
eqid |
|- ( Scalar ` X ) = ( Scalar ` X ) |
84 |
|
eqid |
|- ( Base ` ( Scalar ` X ) ) = ( Base ` ( Scalar ` X ) ) |
85 |
81 82 55 83 84
|
iscph |
|- ( X e. CPreHil <-> ( ( X e. PreHil /\ X e. NrmMod /\ ( Scalar ` X ) = ( CCfld |`s ( Base ` ( Scalar ` X ) ) ) ) /\ ( sqrt " ( ( Base ` ( Scalar ` X ) ) i^i ( 0 [,) +oo ) ) ) C_ ( Base ` ( Scalar ` X ) ) /\ ( norm ` X ) = ( b e. ( Base ` X ) |-> ( sqrt ` ( b ( .i ` X ) b ) ) ) ) ) |
86 |
19 50 80 85
|
syl3anbrc |
|- ( ( W e. CPreHil /\ U e. S ) -> X e. CPreHil ) |