Description: A Banach subspace of a subcomplex pre-Hilbert space is a subcomplex Hilbert space. (Contributed by NM, 11-Apr-2008) (Revised by AV, 25-Sep-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cphssphl.x | |- X = ( W |`s U ) | |
| cphssphl.s | |- S = ( LSubSp ` W ) | ||
| Assertion | cphssphl | |- ( ( W e. CPreHil /\ U e. S /\ X e. Ban ) -> X e. CHil ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cphssphl.x | |- X = ( W |`s U ) | |
| 2 | cphssphl.s | |- S = ( LSubSp ` W ) | |
| 3 | simp3 | |- ( ( W e. CPreHil /\ U e. S /\ X e. Ban ) -> X e. Ban ) | |
| 4 | 1 2 | cphsscph | |- ( ( W e. CPreHil /\ U e. S ) -> X e. CPreHil ) | 
| 5 | 4 | 3adant3 | |- ( ( W e. CPreHil /\ U e. S /\ X e. Ban ) -> X e. CPreHil ) | 
| 6 | ishl | |- ( X e. CHil <-> ( X e. Ban /\ X e. CPreHil ) ) | |
| 7 | 3 5 6 | sylanbrc | |- ( ( W e. CPreHil /\ U e. S /\ X e. Ban ) -> X e. CHil ) |