Description: A Banach subspace of a subcomplex pre-Hilbert space is a subcomplex Hilbert space. (Contributed by NM, 11-Apr-2008) (Revised by AV, 25-Sep-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cphssphl.x | |- X = ( W |`s U ) |
|
cphssphl.s | |- S = ( LSubSp ` W ) |
||
Assertion | cphssphl | |- ( ( W e. CPreHil /\ U e. S /\ X e. Ban ) -> X e. CHil ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cphssphl.x | |- X = ( W |`s U ) |
|
2 | cphssphl.s | |- S = ( LSubSp ` W ) |
|
3 | simp3 | |- ( ( W e. CPreHil /\ U e. S /\ X e. Ban ) -> X e. Ban ) |
|
4 | 1 2 | cphsscph | |- ( ( W e. CPreHil /\ U e. S ) -> X e. CPreHil ) |
5 | 4 | 3adant3 | |- ( ( W e. CPreHil /\ U e. S /\ X e. Ban ) -> X e. CPreHil ) |
6 | ishl | |- ( X e. CHil <-> ( X e. Ban /\ X e. CPreHil ) ) |
|
7 | 3 5 6 | sylanbrc | |- ( ( W e. CPreHil /\ U e. S /\ X e. Ban ) -> X e. CHil ) |