| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cphipcj.h |
|- ., = ( .i ` W ) |
| 2 |
|
cphipcj.v |
|- V = ( Base ` W ) |
| 3 |
|
cphsubdir.m |
|- .- = ( -g ` W ) |
| 4 |
|
cphphl |
|- ( W e. CPreHil -> W e. PreHil ) |
| 5 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
| 6 |
|
eqid |
|- ( -g ` ( Scalar ` W ) ) = ( -g ` ( Scalar ` W ) ) |
| 7 |
5 1 2 3 6
|
ipsubdi |
|- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( A ., ( B .- C ) ) = ( ( A ., B ) ( -g ` ( Scalar ` W ) ) ( A ., C ) ) ) |
| 8 |
4 7
|
sylan |
|- ( ( W e. CPreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( A ., ( B .- C ) ) = ( ( A ., B ) ( -g ` ( Scalar ` W ) ) ( A ., C ) ) ) |
| 9 |
|
cphclm |
|- ( W e. CPreHil -> W e. CMod ) |
| 10 |
9
|
adantr |
|- ( ( W e. CPreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> W e. CMod ) |
| 11 |
4
|
adantr |
|- ( ( W e. CPreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> W e. PreHil ) |
| 12 |
|
simpr1 |
|- ( ( W e. CPreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> A e. V ) |
| 13 |
|
simpr2 |
|- ( ( W e. CPreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> B e. V ) |
| 14 |
|
eqid |
|- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
| 15 |
5 1 2 14
|
ipcl |
|- ( ( W e. PreHil /\ A e. V /\ B e. V ) -> ( A ., B ) e. ( Base ` ( Scalar ` W ) ) ) |
| 16 |
11 12 13 15
|
syl3anc |
|- ( ( W e. CPreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( A ., B ) e. ( Base ` ( Scalar ` W ) ) ) |
| 17 |
|
simpr3 |
|- ( ( W e. CPreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> C e. V ) |
| 18 |
5 1 2 14
|
ipcl |
|- ( ( W e. PreHil /\ A e. V /\ C e. V ) -> ( A ., C ) e. ( Base ` ( Scalar ` W ) ) ) |
| 19 |
11 12 17 18
|
syl3anc |
|- ( ( W e. CPreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( A ., C ) e. ( Base ` ( Scalar ` W ) ) ) |
| 20 |
5 14
|
clmsub |
|- ( ( W e. CMod /\ ( A ., B ) e. ( Base ` ( Scalar ` W ) ) /\ ( A ., C ) e. ( Base ` ( Scalar ` W ) ) ) -> ( ( A ., B ) - ( A ., C ) ) = ( ( A ., B ) ( -g ` ( Scalar ` W ) ) ( A ., C ) ) ) |
| 21 |
10 16 19 20
|
syl3anc |
|- ( ( W e. CPreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( A ., B ) - ( A ., C ) ) = ( ( A ., B ) ( -g ` ( Scalar ` W ) ) ( A ., C ) ) ) |
| 22 |
8 21
|
eqtr4d |
|- ( ( W e. CPreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( A ., ( B .- C ) ) = ( ( A ., B ) - ( A ., C ) ) ) |