Step |
Hyp |
Ref |
Expression |
1 |
|
cphipcj.h |
|- ., = ( .i ` W ) |
2 |
|
cphipcj.v |
|- V = ( Base ` W ) |
3 |
|
cphsubdir.m |
|- .- = ( -g ` W ) |
4 |
|
cphphl |
|- ( W e. CPreHil -> W e. PreHil ) |
5 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
6 |
|
eqid |
|- ( -g ` ( Scalar ` W ) ) = ( -g ` ( Scalar ` W ) ) |
7 |
5 1 2 3 6
|
ipsubdi |
|- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( A ., ( B .- C ) ) = ( ( A ., B ) ( -g ` ( Scalar ` W ) ) ( A ., C ) ) ) |
8 |
4 7
|
sylan |
|- ( ( W e. CPreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( A ., ( B .- C ) ) = ( ( A ., B ) ( -g ` ( Scalar ` W ) ) ( A ., C ) ) ) |
9 |
|
cphclm |
|- ( W e. CPreHil -> W e. CMod ) |
10 |
9
|
adantr |
|- ( ( W e. CPreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> W e. CMod ) |
11 |
4
|
adantr |
|- ( ( W e. CPreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> W e. PreHil ) |
12 |
|
simpr1 |
|- ( ( W e. CPreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> A e. V ) |
13 |
|
simpr2 |
|- ( ( W e. CPreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> B e. V ) |
14 |
|
eqid |
|- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
15 |
5 1 2 14
|
ipcl |
|- ( ( W e. PreHil /\ A e. V /\ B e. V ) -> ( A ., B ) e. ( Base ` ( Scalar ` W ) ) ) |
16 |
11 12 13 15
|
syl3anc |
|- ( ( W e. CPreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( A ., B ) e. ( Base ` ( Scalar ` W ) ) ) |
17 |
|
simpr3 |
|- ( ( W e. CPreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> C e. V ) |
18 |
5 1 2 14
|
ipcl |
|- ( ( W e. PreHil /\ A e. V /\ C e. V ) -> ( A ., C ) e. ( Base ` ( Scalar ` W ) ) ) |
19 |
11 12 17 18
|
syl3anc |
|- ( ( W e. CPreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( A ., C ) e. ( Base ` ( Scalar ` W ) ) ) |
20 |
5 14
|
clmsub |
|- ( ( W e. CMod /\ ( A ., B ) e. ( Base ` ( Scalar ` W ) ) /\ ( A ., C ) e. ( Base ` ( Scalar ` W ) ) ) -> ( ( A ., B ) - ( A ., C ) ) = ( ( A ., B ) ( -g ` ( Scalar ` W ) ) ( A ., C ) ) ) |
21 |
10 16 19 20
|
syl3anc |
|- ( ( W e. CPreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( A ., B ) - ( A ., C ) ) = ( ( A ., B ) ( -g ` ( Scalar ` W ) ) ( A ., C ) ) ) |
22 |
8 21
|
eqtr4d |
|- ( ( W e. CPreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( A ., ( B .- C ) ) = ( ( A ., B ) - ( A ., C ) ) ) |