Metamath Proof Explorer


Theorem cphsubrg

Description: The scalar field of a subcomplex pre-Hilbert space is a subring of CCfld . (Contributed by Mario Carneiro, 8-Oct-2015)

Ref Expression
Hypotheses cphsca.f
|- F = ( Scalar ` W )
cphsca.k
|- K = ( Base ` F )
Assertion cphsubrg
|- ( W e. CPreHil -> K e. ( SubRing ` CCfld ) )

Proof

Step Hyp Ref Expression
1 cphsca.f
 |-  F = ( Scalar ` W )
2 cphsca.k
 |-  K = ( Base ` F )
3 1 2 cphsca
 |-  ( W e. CPreHil -> F = ( CCfld |`s K ) )
4 cphlvec
 |-  ( W e. CPreHil -> W e. LVec )
5 1 lvecdrng
 |-  ( W e. LVec -> F e. DivRing )
6 4 5 syl
 |-  ( W e. CPreHil -> F e. DivRing )
7 2 3 6 cphsubrglem
 |-  ( W e. CPreHil -> ( F = ( CCfld |`s K ) /\ K = ( K i^i CC ) /\ K e. ( SubRing ` CCfld ) ) )
8 7 simp3d
 |-  ( W e. CPreHil -> K e. ( SubRing ` CCfld ) )