Step |
Hyp |
Ref |
Expression |
1 |
|
cphsubrglem.k |
|- K = ( Base ` F ) |
2 |
|
cphsubrglem.1 |
|- ( ph -> F = ( CCfld |`s A ) ) |
3 |
|
cphsubrglem.2 |
|- ( ph -> F e. DivRing ) |
4 |
2
|
fveq2d |
|- ( ph -> ( Base ` F ) = ( Base ` ( CCfld |`s A ) ) ) |
5 |
|
drngring |
|- ( F e. DivRing -> F e. Ring ) |
6 |
3 5
|
syl |
|- ( ph -> F e. Ring ) |
7 |
2 6
|
eqeltrrd |
|- ( ph -> ( CCfld |`s A ) e. Ring ) |
8 |
|
eqid |
|- ( Base ` ( CCfld |`s A ) ) = ( Base ` ( CCfld |`s A ) ) |
9 |
|
eqid |
|- ( 0g ` ( CCfld |`s A ) ) = ( 0g ` ( CCfld |`s A ) ) |
10 |
8 9
|
ring0cl |
|- ( ( CCfld |`s A ) e. Ring -> ( 0g ` ( CCfld |`s A ) ) e. ( Base ` ( CCfld |`s A ) ) ) |
11 |
|
reldmress |
|- Rel dom |`s |
12 |
|
eqid |
|- ( CCfld |`s A ) = ( CCfld |`s A ) |
13 |
11 12 8
|
elbasov |
|- ( ( 0g ` ( CCfld |`s A ) ) e. ( Base ` ( CCfld |`s A ) ) -> ( CCfld e. _V /\ A e. _V ) ) |
14 |
7 10 13
|
3syl |
|- ( ph -> ( CCfld e. _V /\ A e. _V ) ) |
15 |
14
|
simprd |
|- ( ph -> A e. _V ) |
16 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
17 |
12 16
|
ressbas |
|- ( A e. _V -> ( A i^i CC ) = ( Base ` ( CCfld |`s A ) ) ) |
18 |
15 17
|
syl |
|- ( ph -> ( A i^i CC ) = ( Base ` ( CCfld |`s A ) ) ) |
19 |
4 18
|
eqtr4d |
|- ( ph -> ( Base ` F ) = ( A i^i CC ) ) |
20 |
1 19
|
eqtrid |
|- ( ph -> K = ( A i^i CC ) ) |
21 |
20
|
oveq2d |
|- ( ph -> ( CCfld |`s K ) = ( CCfld |`s ( A i^i CC ) ) ) |
22 |
16
|
ressinbas |
|- ( A e. _V -> ( CCfld |`s A ) = ( CCfld |`s ( A i^i CC ) ) ) |
23 |
15 22
|
syl |
|- ( ph -> ( CCfld |`s A ) = ( CCfld |`s ( A i^i CC ) ) ) |
24 |
21 23
|
eqtr4d |
|- ( ph -> ( CCfld |`s K ) = ( CCfld |`s A ) ) |
25 |
2 24
|
eqtr4d |
|- ( ph -> F = ( CCfld |`s K ) ) |
26 |
25 6
|
eqeltrrd |
|- ( ph -> ( CCfld |`s K ) e. Ring ) |
27 |
|
cnring |
|- CCfld e. Ring |
28 |
26 27
|
jctil |
|- ( ph -> ( CCfld e. Ring /\ ( CCfld |`s K ) e. Ring ) ) |
29 |
12 16
|
ressbasss |
|- ( Base ` ( CCfld |`s A ) ) C_ CC |
30 |
4 29
|
eqsstrdi |
|- ( ph -> ( Base ` F ) C_ CC ) |
31 |
1 30
|
eqsstrid |
|- ( ph -> K C_ CC ) |
32 |
|
eqid |
|- ( 0g ` F ) = ( 0g ` F ) |
33 |
|
eqid |
|- ( 1r ` F ) = ( 1r ` F ) |
34 |
32 33
|
drngunz |
|- ( F e. DivRing -> ( 1r ` F ) =/= ( 0g ` F ) ) |
35 |
3 34
|
syl |
|- ( ph -> ( 1r ` F ) =/= ( 0g ` F ) ) |
36 |
25
|
fveq2d |
|- ( ph -> ( 0g ` F ) = ( 0g ` ( CCfld |`s K ) ) ) |
37 |
|
ringgrp |
|- ( CCfld e. Ring -> CCfld e. Grp ) |
38 |
27 37
|
mp1i |
|- ( ph -> CCfld e. Grp ) |
39 |
|
ringgrp |
|- ( ( CCfld |`s K ) e. Ring -> ( CCfld |`s K ) e. Grp ) |
40 |
26 39
|
syl |
|- ( ph -> ( CCfld |`s K ) e. Grp ) |
41 |
16
|
issubg |
|- ( K e. ( SubGrp ` CCfld ) <-> ( CCfld e. Grp /\ K C_ CC /\ ( CCfld |`s K ) e. Grp ) ) |
42 |
38 31 40 41
|
syl3anbrc |
|- ( ph -> K e. ( SubGrp ` CCfld ) ) |
43 |
|
eqid |
|- ( CCfld |`s K ) = ( CCfld |`s K ) |
44 |
|
cnfld0 |
|- 0 = ( 0g ` CCfld ) |
45 |
43 44
|
subg0 |
|- ( K e. ( SubGrp ` CCfld ) -> 0 = ( 0g ` ( CCfld |`s K ) ) ) |
46 |
42 45
|
syl |
|- ( ph -> 0 = ( 0g ` ( CCfld |`s K ) ) ) |
47 |
36 46
|
eqtr4d |
|- ( ph -> ( 0g ` F ) = 0 ) |
48 |
35 47
|
neeqtrd |
|- ( ph -> ( 1r ` F ) =/= 0 ) |
49 |
48
|
neneqd |
|- ( ph -> -. ( 1r ` F ) = 0 ) |
50 |
1 33
|
ringidcl |
|- ( F e. Ring -> ( 1r ` F ) e. K ) |
51 |
6 50
|
syl |
|- ( ph -> ( 1r ` F ) e. K ) |
52 |
31 51
|
sseldd |
|- ( ph -> ( 1r ` F ) e. CC ) |
53 |
52
|
sqvald |
|- ( ph -> ( ( 1r ` F ) ^ 2 ) = ( ( 1r ` F ) x. ( 1r ` F ) ) ) |
54 |
25
|
fveq2d |
|- ( ph -> ( 1r ` F ) = ( 1r ` ( CCfld |`s K ) ) ) |
55 |
54
|
oveq1d |
|- ( ph -> ( ( 1r ` F ) x. ( 1r ` F ) ) = ( ( 1r ` ( CCfld |`s K ) ) x. ( 1r ` F ) ) ) |
56 |
25
|
fveq2d |
|- ( ph -> ( Base ` F ) = ( Base ` ( CCfld |`s K ) ) ) |
57 |
1 56
|
eqtrid |
|- ( ph -> K = ( Base ` ( CCfld |`s K ) ) ) |
58 |
51 57
|
eleqtrd |
|- ( ph -> ( 1r ` F ) e. ( Base ` ( CCfld |`s K ) ) ) |
59 |
|
eqid |
|- ( Base ` ( CCfld |`s K ) ) = ( Base ` ( CCfld |`s K ) ) |
60 |
1
|
fvexi |
|- K e. _V |
61 |
|
cnfldmul |
|- x. = ( .r ` CCfld ) |
62 |
43 61
|
ressmulr |
|- ( K e. _V -> x. = ( .r ` ( CCfld |`s K ) ) ) |
63 |
60 62
|
ax-mp |
|- x. = ( .r ` ( CCfld |`s K ) ) |
64 |
|
eqid |
|- ( 1r ` ( CCfld |`s K ) ) = ( 1r ` ( CCfld |`s K ) ) |
65 |
59 63 64
|
ringlidm |
|- ( ( ( CCfld |`s K ) e. Ring /\ ( 1r ` F ) e. ( Base ` ( CCfld |`s K ) ) ) -> ( ( 1r ` ( CCfld |`s K ) ) x. ( 1r ` F ) ) = ( 1r ` F ) ) |
66 |
26 58 65
|
syl2anc |
|- ( ph -> ( ( 1r ` ( CCfld |`s K ) ) x. ( 1r ` F ) ) = ( 1r ` F ) ) |
67 |
53 55 66
|
3eqtrd |
|- ( ph -> ( ( 1r ` F ) ^ 2 ) = ( 1r ` F ) ) |
68 |
|
sq01 |
|- ( ( 1r ` F ) e. CC -> ( ( ( 1r ` F ) ^ 2 ) = ( 1r ` F ) <-> ( ( 1r ` F ) = 0 \/ ( 1r ` F ) = 1 ) ) ) |
69 |
52 68
|
syl |
|- ( ph -> ( ( ( 1r ` F ) ^ 2 ) = ( 1r ` F ) <-> ( ( 1r ` F ) = 0 \/ ( 1r ` F ) = 1 ) ) ) |
70 |
67 69
|
mpbid |
|- ( ph -> ( ( 1r ` F ) = 0 \/ ( 1r ` F ) = 1 ) ) |
71 |
70
|
ord |
|- ( ph -> ( -. ( 1r ` F ) = 0 -> ( 1r ` F ) = 1 ) ) |
72 |
49 71
|
mpd |
|- ( ph -> ( 1r ` F ) = 1 ) |
73 |
72 51
|
eqeltrrd |
|- ( ph -> 1 e. K ) |
74 |
31 73
|
jca |
|- ( ph -> ( K C_ CC /\ 1 e. K ) ) |
75 |
|
cnfld1 |
|- 1 = ( 1r ` CCfld ) |
76 |
16 75
|
issubrg |
|- ( K e. ( SubRing ` CCfld ) <-> ( ( CCfld e. Ring /\ ( CCfld |`s K ) e. Ring ) /\ ( K C_ CC /\ 1 e. K ) ) ) |
77 |
28 74 76
|
sylanbrc |
|- ( ph -> K e. ( SubRing ` CCfld ) ) |
78 |
25 20 77
|
3jca |
|- ( ph -> ( F = ( CCfld |`s K ) /\ K = ( A i^i CC ) /\ K e. ( SubRing ` CCfld ) ) ) |