Step |
Hyp |
Ref |
Expression |
1 |
|
tcphval.n |
|- G = ( toCPreHil ` W ) |
2 |
|
cphtcphnm.n |
|- N = ( norm ` W ) |
3 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
4 |
|
eqid |
|- ( .i ` W ) = ( .i ` W ) |
5 |
3 4 2
|
cphnmfval |
|- ( W e. CPreHil -> N = ( x e. ( Base ` W ) |-> ( sqrt ` ( x ( .i ` W ) x ) ) ) ) |
6 |
|
cphlmod |
|- ( W e. CPreHil -> W e. LMod ) |
7 |
|
lmodgrp |
|- ( W e. LMod -> W e. Grp ) |
8 |
|
eqid |
|- ( norm ` G ) = ( norm ` G ) |
9 |
1 8 3 4
|
tchnmfval |
|- ( W e. Grp -> ( norm ` G ) = ( x e. ( Base ` W ) |-> ( sqrt ` ( x ( .i ` W ) x ) ) ) ) |
10 |
6 7 9
|
3syl |
|- ( W e. CPreHil -> ( norm ` G ) = ( x e. ( Base ` W ) |-> ( sqrt ` ( x ( .i ` W ) x ) ) ) ) |
11 |
5 10
|
eqtr4d |
|- ( W e. CPreHil -> N = ( norm ` G ) ) |