| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cplem1.1 |
|- C = { y e. B | A. z e. B ( rank ` y ) C_ ( rank ` z ) } |
| 2 |
|
cplem1.2 |
|- D = U_ x e. A C |
| 3 |
|
scott0 |
|- ( B = (/) <-> { y e. B | A. z e. B ( rank ` y ) C_ ( rank ` z ) } = (/) ) |
| 4 |
1
|
eqeq1i |
|- ( C = (/) <-> { y e. B | A. z e. B ( rank ` y ) C_ ( rank ` z ) } = (/) ) |
| 5 |
3 4
|
bitr4i |
|- ( B = (/) <-> C = (/) ) |
| 6 |
5
|
necon3bii |
|- ( B =/= (/) <-> C =/= (/) ) |
| 7 |
|
n0 |
|- ( C =/= (/) <-> E. w w e. C ) |
| 8 |
6 7
|
bitri |
|- ( B =/= (/) <-> E. w w e. C ) |
| 9 |
1
|
ssrab3 |
|- C C_ B |
| 10 |
9
|
sseli |
|- ( w e. C -> w e. B ) |
| 11 |
10
|
a1i |
|- ( x e. A -> ( w e. C -> w e. B ) ) |
| 12 |
|
ssiun2 |
|- ( x e. A -> C C_ U_ x e. A C ) |
| 13 |
12 2
|
sseqtrrdi |
|- ( x e. A -> C C_ D ) |
| 14 |
13
|
sseld |
|- ( x e. A -> ( w e. C -> w e. D ) ) |
| 15 |
11 14
|
jcad |
|- ( x e. A -> ( w e. C -> ( w e. B /\ w e. D ) ) ) |
| 16 |
|
inelcm |
|- ( ( w e. B /\ w e. D ) -> ( B i^i D ) =/= (/) ) |
| 17 |
15 16
|
syl6 |
|- ( x e. A -> ( w e. C -> ( B i^i D ) =/= (/) ) ) |
| 18 |
17
|
exlimdv |
|- ( x e. A -> ( E. w w e. C -> ( B i^i D ) =/= (/) ) ) |
| 19 |
8 18
|
biimtrid |
|- ( x e. A -> ( B =/= (/) -> ( B i^i D ) =/= (/) ) ) |
| 20 |
19
|
rgen |
|- A. x e. A ( B =/= (/) -> ( B i^i D ) =/= (/) ) |