Step |
Hyp |
Ref |
Expression |
1 |
|
cplem1.1 |
|- C = { y e. B | A. z e. B ( rank ` y ) C_ ( rank ` z ) } |
2 |
|
cplem1.2 |
|- D = U_ x e. A C |
3 |
|
scott0 |
|- ( B = (/) <-> { y e. B | A. z e. B ( rank ` y ) C_ ( rank ` z ) } = (/) ) |
4 |
1
|
eqeq1i |
|- ( C = (/) <-> { y e. B | A. z e. B ( rank ` y ) C_ ( rank ` z ) } = (/) ) |
5 |
3 4
|
bitr4i |
|- ( B = (/) <-> C = (/) ) |
6 |
5
|
necon3bii |
|- ( B =/= (/) <-> C =/= (/) ) |
7 |
|
n0 |
|- ( C =/= (/) <-> E. w w e. C ) |
8 |
6 7
|
bitri |
|- ( B =/= (/) <-> E. w w e. C ) |
9 |
1
|
ssrab3 |
|- C C_ B |
10 |
9
|
sseli |
|- ( w e. C -> w e. B ) |
11 |
10
|
a1i |
|- ( x e. A -> ( w e. C -> w e. B ) ) |
12 |
|
ssiun2 |
|- ( x e. A -> C C_ U_ x e. A C ) |
13 |
12 2
|
sseqtrrdi |
|- ( x e. A -> C C_ D ) |
14 |
13
|
sseld |
|- ( x e. A -> ( w e. C -> w e. D ) ) |
15 |
11 14
|
jcad |
|- ( x e. A -> ( w e. C -> ( w e. B /\ w e. D ) ) ) |
16 |
|
inelcm |
|- ( ( w e. B /\ w e. D ) -> ( B i^i D ) =/= (/) ) |
17 |
15 16
|
syl6 |
|- ( x e. A -> ( w e. C -> ( B i^i D ) =/= (/) ) ) |
18 |
17
|
exlimdv |
|- ( x e. A -> ( E. w w e. C -> ( B i^i D ) =/= (/) ) ) |
19 |
8 18
|
syl5bi |
|- ( x e. A -> ( B =/= (/) -> ( B i^i D ) =/= (/) ) ) |
20 |
19
|
rgen |
|- A. x e. A ( B =/= (/) -> ( B i^i D ) =/= (/) ) |