Metamath Proof Explorer


Theorem cplgr0v

Description: A null graph (with no vertices) is a complete graph. (Contributed by Alexander van der Vekens, 13-Oct-2017) (Revised by AV, 1-Nov-2020)

Ref Expression
Hypothesis cplgr0v.v
|- V = ( Vtx ` G )
Assertion cplgr0v
|- ( ( G e. W /\ V = (/) ) -> G e. ComplGraph )

Proof

Step Hyp Ref Expression
1 cplgr0v.v
 |-  V = ( Vtx ` G )
2 rzal
 |-  ( V = (/) -> A. v e. V v e. ( UnivVtx ` G ) )
3 2 adantl
 |-  ( ( G e. W /\ V = (/) ) -> A. v e. V v e. ( UnivVtx ` G ) )
4 1 iscplgr
 |-  ( G e. W -> ( G e. ComplGraph <-> A. v e. V v e. ( UnivVtx ` G ) ) )
5 4 adantr
 |-  ( ( G e. W /\ V = (/) ) -> ( G e. ComplGraph <-> A. v e. V v e. ( UnivVtx ` G ) ) )
6 3 5 mpbird
 |-  ( ( G e. W /\ V = (/) ) -> G e. ComplGraph )