Description: A null graph (with no vertices) is a complete graph. (Contributed by Alexander van der Vekens, 13-Oct-2017) (Revised by AV, 1-Nov-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | cplgr0v.v | |- V = ( Vtx ` G ) |
|
Assertion | cplgr0v | |- ( ( G e. W /\ V = (/) ) -> G e. ComplGraph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cplgr0v.v | |- V = ( Vtx ` G ) |
|
2 | rzal | |- ( V = (/) -> A. v e. V v e. ( UnivVtx ` G ) ) |
|
3 | 2 | adantl | |- ( ( G e. W /\ V = (/) ) -> A. v e. V v e. ( UnivVtx ` G ) ) |
4 | 1 | iscplgr | |- ( G e. W -> ( G e. ComplGraph <-> A. v e. V v e. ( UnivVtx ` G ) ) ) |
5 | 4 | adantr | |- ( ( G e. W /\ V = (/) ) -> ( G e. ComplGraph <-> A. v e. V v e. ( UnivVtx ` G ) ) ) |
6 | 3 5 | mpbird | |- ( ( G e. W /\ V = (/) ) -> G e. ComplGraph ) |