Description: A null graph (with no vertices) is a complete graph. (Contributed by Alexander van der Vekens, 13-Oct-2017) (Revised by AV, 1-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cplgr0v.v | |- V = ( Vtx ` G )  | 
					|
| Assertion | cplgr0v | |- ( ( G e. W /\ V = (/) ) -> G e. ComplGraph )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cplgr0v.v | |- V = ( Vtx ` G )  | 
						|
| 2 | rzal | |- ( V = (/) -> A. v e. V v e. ( UnivVtx ` G ) )  | 
						|
| 3 | 2 | adantl | |- ( ( G e. W /\ V = (/) ) -> A. v e. V v e. ( UnivVtx ` G ) )  | 
						
| 4 | 1 | iscplgr | |- ( G e. W -> ( G e. ComplGraph <-> A. v e. V v e. ( UnivVtx ` G ) ) )  | 
						
| 5 | 4 | adantr | |- ( ( G e. W /\ V = (/) ) -> ( G e. ComplGraph <-> A. v e. V v e. ( UnivVtx ` G ) ) )  | 
						
| 6 | 3 5 | mpbird | |- ( ( G e. W /\ V = (/) ) -> G e. ComplGraph )  |