Description: Lemma for cplgr1v and cusgr1v . (Contributed by AV, 23-Mar-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | cplgr0v.v | |- V = ( Vtx ` G ) |
|
Assertion | cplgr1vlem | |- ( ( # ` V ) = 1 -> G e. _V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cplgr0v.v | |- V = ( Vtx ` G ) |
|
2 | 1 | fvexi | |- V e. _V |
3 | hash1snb | |- ( V e. _V -> ( ( # ` V ) = 1 <-> E. n V = { n } ) ) |
|
4 | 2 3 | ax-mp | |- ( ( # ` V ) = 1 <-> E. n V = { n } ) |
5 | vsnid | |- n e. { n } |
|
6 | eleq2 | |- ( V = { n } -> ( n e. V <-> n e. { n } ) ) |
|
7 | 5 6 | mpbiri | |- ( V = { n } -> n e. V ) |
8 | 1 | 1vgrex | |- ( n e. V -> G e. _V ) |
9 | 7 8 | syl | |- ( V = { n } -> G e. _V ) |
10 | 9 | exlimiv | |- ( E. n V = { n } -> G e. _V ) |
11 | 4 10 | sylbi | |- ( ( # ` V ) = 1 -> G e. _V ) |