Metamath Proof Explorer


Theorem cplgr1vlem

Description: Lemma for cplgr1v and cusgr1v . (Contributed by AV, 23-Mar-2021)

Ref Expression
Hypothesis cplgr0v.v
|- V = ( Vtx ` G )
Assertion cplgr1vlem
|- ( ( # ` V ) = 1 -> G e. _V )

Proof

Step Hyp Ref Expression
1 cplgr0v.v
 |-  V = ( Vtx ` G )
2 1 fvexi
 |-  V e. _V
3 hash1snb
 |-  ( V e. _V -> ( ( # ` V ) = 1 <-> E. n V = { n } ) )
4 2 3 ax-mp
 |-  ( ( # ` V ) = 1 <-> E. n V = { n } )
5 vsnid
 |-  n e. { n }
6 eleq2
 |-  ( V = { n } -> ( n e. V <-> n e. { n } ) )
7 5 6 mpbiri
 |-  ( V = { n } -> n e. V )
8 1 1vgrex
 |-  ( n e. V -> G e. _V )
9 7 8 syl
 |-  ( V = { n } -> G e. _V )
10 9 exlimiv
 |-  ( E. n V = { n } -> G e. _V )
11 4 10 sylbi
 |-  ( ( # ` V ) = 1 -> G e. _V )